Your browser doesn't support javascript.
loading
Rapid and efficient removal of multiple heavy metals from diverse types of water using magnetic biochars derived from antibiotic fermentation residue.
Mu, Jingli; Chen, Yunchao; Wu, Xihui; Chen, Qinpeng; Zhang, Mingdong.
Affiliation
  • Mu J; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, 350108, PR China.
  • Chen Y; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350028, PR China.
  • Wu X; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
  • Chen Q; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
  • Zhang M; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, 350108, PR China. Electronic address:
J Environ Manage ; 351: 119685, 2024 Feb.
Article in En | MEDLINE | ID: mdl-38042070
ABSTRACT
Pyrolysis is a promising method to treat antibiotic fermentation residue (AFR), a hazardous waste in China, with the benefits of detoxification and resource recycling. However, the application of the AFR-derived biochar has been limited yet, restricting the use of pyrolysis to treat AFR. Herein, for the first time, we reported the use of magnetic biochars derived from vancomycin fermentation residue to rapidly and efficiently co-adsorb multiple heavy metals from diverse types of water with complex matrices. The biochar prepared at 700 °C (labeled as VBC700) exhibited high affinity and selectivity for multiple heavy metals, especially for Ag(I), Hg(II), Pb(II), and Cu(II). The kinetics for Ag(I), Hg(II), and Pb(II) were ultrafast with an equilibrium time of only 5 min, while those for Cu(II) were relatively slower. The maximum adsorption capacity calculated from the Langmuir model for Ag(I), Hg(II), Pb(II), and Cu(II) reached 177.4, 105.9, 387.1, 124.5 mg/g, respectively, which were superior to much previously reported adsorbents. Impressively, Na(I), K(I), Ca(II), Mg(II), and salinity did not affect the capture of these heavy metals, and thus >99% of Ag(I), Pb(II), and Cu(II) were concurrently removed from complex water matrices including seawater, which has rarely been reported before. Furthermore, VBC700 remained high adsorption performance at pH ≥ 3. The adsorption mechanisms included ion exchange, precipitation, and inner-sphere complexation. Overall, the results demonstrate that VBC700 would be an excellent adsorbent to co-capture multiple heavy metals from diverse types of water, highlighting the feasibility of using pyrolysis to achieve a win-win goal for AFR management and heavy metal pollution control.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Metals, Heavy / Mercury Language: En Journal: J Environ Manage Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Metals, Heavy / Mercury Language: En Journal: J Environ Manage Year: 2024 Document type: Article
...