Your browser doesn't support javascript.
loading
Endogenous Zinc-Ion-Triggered In Situ Gelation Enables Zn Capture to Reprogram Benign Hyperplastic Prostate Microenvironment and Shrink Prostate.
Ge, Jianchao; Fang, Chao; Tan, Haisong; Zhan, Ming; Gu, Meng; Ni, Jianshu; Yang, Guangcan; Zhang, Haipeng; Ni, Jinliang; Zhang, Kun; Xu, Bin.
Affiliation
  • Ge J; Department of Urology, Affiliated Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhi-zao-ju Road, Shanghai, 200011, P. R. China.
  • Fang C; Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Chengdu, Sichuan, 610072, China.
  • Tan H; Central Laboratory and Department of Urology, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, No. 301 Yan-chang-zhong Road, Shanghai, 200072, P. R. China.
  • Zhan M; Department of Urology, Affiliated Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhi-zao-ju Road, Shanghai, 200011, P. R. China.
  • Gu M; Department of Urology, Affiliated Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhi-zao-ju Road, Shanghai, 200011, P. R. China.
  • Ni J; Department of Urology, Affiliated Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhi-zao-ju Road, Shanghai, 200011, P. R. China.
  • Yang G; Department of Urology, Affiliated Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, No. 639 Zhi-zao-ju Road, Shanghai, 200011, P. R. China.
  • Zhang H; Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Chengdu, Sichuan, 610072, China.
  • Ni J; Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Chengdu, Sichuan, 610072, China.
  • Zhang K; Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Chengdu, Sichuan, 610072, China.
  • Xu B; Department of Pharmacy and Central Laboratory, Sichuan Academy of Medical Sciences Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Chengdu, Sichuan, 610072, China.
Adv Mater ; 36(11): e2307796, 2024 Mar.
Article in En | MEDLINE | ID: mdl-38096869
ABSTRACT
Benign prostatic hyperplasia (BPH) as the leading cause of urination disorder is still a refractory disease, and there have no satisfied drugs or treatment protocols yet. With identifying excessive Zn2+ , inflammation, and oxidative stress as the etiology of aberrant hyperplasia, an injectable sodium alginate (SA) and glycyrrhizic acid (GA)-interconnected hydrogels (SAGA) featuring Zn2+ -triggered in situ gelation are developed to load lonidamine for reprogramming prostate microenvironment and treating BPH. Herein, SAGA hydrogels can crosslink with Zn2+ in BPH via coordination chelation and switch free Zn2+ to bound ones, consequently alleviating Zn2+ -arisen inflammation and glycolysis. Beyond capturing Zn2+ , GA with intrinsic immunoregulatory property can also alleviate local inflammation and scavenge reactive oxygen species (ROS). Intriguingly, Zn2+ chelation-bridged interconnection in SAGA enhances its mechanical property and regulates the degradation rate to enable continuous lonidamine release, favoring hyperplastic acini apoptosis and further inhibiting glycolysis. These multiple actions cooperatively reprogram BPH microenvironment to alleviate characteristic symptoms of BPH and shrink prostate. RNA sequencing reveals that chemotaxis, glycolysis, and tumor necrosis factor (TNF) inflammation-related pathways associated with M1-like phenotype polarization are discerned as the action rationales of such endogenous Zn2+ -triggered in situ hydrogels, providing a candidate avenue to treat BPH.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Prostate / Prostatic Hyperplasia Limits: Humans / Male Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Prostate / Prostatic Hyperplasia Limits: Humans / Male Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article