Your browser doesn't support javascript.
loading
Further Evidence for Shape Coexistence in
Nies, L; Canete, L; Dao, D D; Giraud, S; Kankainen, A; Lunney, D; Nowacki, F; Bastin, B; Stryjczyk, M; Ascher, P; Blaum, K; Cakirli, R B; Eronen, T; Fischer, P; Flayol, M; Girard Alcindor, V; Herlert, A; Jokinen, A; Khanam, A; Köster, U; Lange, D; Moore, I D; Müller, M; Mougeot, M; Nesterenko, D A; Penttilä, H; Petrone, C; Pohjalainen, I; de Roubin, A; Rubchenya, V; Schweiger, Ch; Schweikhard, L; Vilen, M; Äystö, J.
Affiliation
  • Nies L; European Organization for Nuclear Research (CERN), Meyrin, 1211 Geneva, Switzerland.
  • Canete L; Institut für Physik, Universität Greifswald, 17487 Greifswald, Germany.
  • Dao DD; University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland.
  • Giraud S; Department of Physics, University of Surrey, Guildford GU2 7X5, United Kingdom.
  • Kankainen A; Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
  • Lunney D; GANIL, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France.
  • Nowacki F; University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland.
  • Bastin B; Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France.
  • Stryjczyk M; Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
  • Ascher P; GANIL, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France.
  • Blaum K; University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland.
  • Cakirli RB; Université de Bordeaux, CNRS/IN2P3-Université, CNRS/IN2P3, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France.
  • Eronen T; Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany.
  • Fischer P; Department of Physics, Istanbul University, Istanbul 34134, Turkey.
  • Flayol M; University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland.
  • Girard Alcindor V; Institut für Physik, Universität Greifswald, 17487 Greifswald, Germany.
  • Herlert A; Université de Bordeaux, CNRS/IN2P3-Université, CNRS/IN2P3, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France.
  • Jokinen A; GANIL, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France.
  • Khanam A; FAIR GmbH, Planckstraße 1, 64291 Darmstadt, Germany.
  • Köster U; University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland.
  • Lange D; University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland.
  • Moore ID; Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland.
  • Müller M; Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki, Finland.
  • Mougeot M; European Organization for Nuclear Research (CERN), Meyrin, 1211 Geneva, Switzerland.
  • Nesterenko DA; Institut Laue-Langevin, 38000 Grenoble, France.
  • Penttilä H; Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany.
  • Petrone C; University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland.
  • Pohjalainen I; Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany.
  • de Roubin A; University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland.
  • Rubchenya V; Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany.
  • Schweiger C; University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland.
  • Schweikhard L; University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland.
  • Vilen M; IFIN-HH, P.O. Box MG-6, 077125 Bucharest-Magurele, Romania.
  • Äystö J; University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland.
Phys Rev Lett ; 131(22): 222503, 2023 Dec 01.
Article in En | MEDLINE | ID: mdl-38101393
ABSTRACT
Isomers close to doubly magic _{28}^{78}Ni_{50} provide essential information on the shell evolution and shape coexistence near the Z=28 and N=50 double shell closure. We report the excitation energy measurement of the 1/2^{+} isomer in _{30}^{79}Zn_{49} through independent high-precision mass measurements with the JYFLTRAP double Penning trap and with the ISOLTRAP multi-reflection time-of-flight mass spectrometer. We unambiguously place the 1/2^{+} isomer at 942(10) keV, slightly below the 5/2^{+} state at 983(3) keV. With the use of state-of-the-art shell-model diagonalizations, complemented with discrete nonorthogonal shell-model calculations which are used here for the first time to interpret shape coexistence, we find low-lying deformed intruder states, similar to other N=49 isotones. The 1/2^{+} isomer is interpreted as the bandhead of a low-lying deformed structure akin to a predicted low-lying deformed band in ^{80}Zn, and points to shape coexistence in ^{79,80}Zn similar to the one observed in ^{78}Ni. The results make a strong case for confirming the claim of shape coexistence in this key region of the nuclear chart.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2023 Document type: Article Affiliation country: Suiza

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2023 Document type: Article Affiliation country: Suiza
...