Your browser doesn't support javascript.
loading
Hydrogen-Bonded Cocrystals Encapsulating CsPbBr3 Perovskite Nanocrystals with Enhancement of Charge Transport for Photocatalytic Reduction of Uranium.
Cai, Yuan-Jun; Luo, Qiu-Xia; Jiang, Qiao-Qiao; Liu, Xin; Chen, Xiao-Juan; Liu, Jin-Lan; Mao, Xiang-Lan; Qi, Jia-Xin; Liang, Ru-Ping; Qiu, Jian-Ding.
Affiliation
  • Cai YJ; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
  • Luo QX; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
  • Jiang QQ; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
  • Liu X; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
  • Chen XJ; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
  • Liu JL; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
  • Mao XL; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
  • Qi JX; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
  • Liang RP; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
  • Qiu JD; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
Small ; 20(25): e2310672, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38229539
ABSTRACT
At present, poor stability and carrier transfer efficiency are the main problems that limit the development of perovskite-based photoelectric technologies. In this work, hydrogen-bonded cocrystal-coated perovskite composite (PeNCs@NHS-M) is easily obtained by inducing rapid crystallization of melamine (M) and N-hydroxysuccinimide (NHS) with PeNCs as the nuclei. The outer NHS-M cocrystal passivates the undercoordinated lead atoms by forming covalent bonds, thereby greatly reducing the trap density while maintaining good structure stability for perovskite nanocrystals. Moreover, benefiting from the interfacial covalent band linkage and long-range ordered structures of cocrystals, the charge transfer efficiency is effectively enhanced and PeNCs@NHS-M displays superior photoelectric performance. Based on the excellent photoelectric performance and abundant active sites of PeNCs@NHS-M, photocatalytic reduction of uranium is realized. PeNCs@NHS-M exhibits U(VI) reduction removal capability of up to 810.1 mg g-1 in the presence of light. The strategy of cocrystals trapping perovskite nanocrystals provides a simple synthesis method for composites and opens up a new idea for simultaneously improving the stability and photovoltaic performance of perovskite.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: Alemania

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: Alemania