Your browser doesn't support javascript.
loading
Nitrogen addition accelerates litter decomposition and arsenic release of Pteris vittata in arsenic-contaminated soil from mine.
Wang, Wenjuan; Meng, Dele; Tan, Xiangping; Zheng, Mianhai; Xiao, Juanjuan; Li, Shuoyu; Mo, Qifeng; Li, Huashou.
Affiliation
  • Wang W; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of Chin
  • Meng D; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of Chin
  • Tan X; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
  • Zheng M; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
  • Xiao J; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
  • Li S; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of Chin
  • Mo Q; College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China. Electronic address: moqifeng@scau.edu.cn.
  • Li H; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of Chin
Ecotoxicol Environ Saf ; 271: 115959, 2024 Feb.
Article in En | MEDLINE | ID: mdl-38232527
ABSTRACT
The arsenic (As) release from litter decomposition of As-hyperaccumulator (Pteris vittata L.) in mine areas poses an ecological risk for metal dispersion into the soil. However, the effect of atmospheric nitrogen (N) deposition on the litter decomposition of As-hyperaccumulator in the tailing mine area remains poorly understood. In this study, we conducted a microcosm experiment to investigate the As release during the decomposition of P. vittata litter under four gradients of N addition (0, 5, 10, and 20 mg N g-1). The N10 treatment (10 mg N g-1) enhanced As release from P. vittata litter by 1.2-2.6 folds compared to control. Furthermore, Streptomyces, Pantoea, and Curtobacterium were found to primarily affect the As release during the litter decomposition process. Additionally, N addition decreased the soil pH, subsequently increased the microbial biomass, as well as hydrolase activities (NAG) which regulated N release. Thereby, N addition increased the As release from P. vittata litter and then transferred to the soil. Moreover, this process caused a transformation of non-labile As fractions into labile forms, resulting in an increase of available As concentration by 13.02-20.16% within the soil after a 90-day incubation period. Our findings provide valuable insights into assessing the ecological risk associated with As release from the decomposition of P. vittata litter towards the soil, particularly under elevated atmospheric N deposition.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arsenic / Soil Pollutants / Pteris Language: En Journal: Ecotoxicol Environ Saf Year: 2024 Document type: Article Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arsenic / Soil Pollutants / Pteris Language: En Journal: Ecotoxicol Environ Saf Year: 2024 Document type: Article Country of publication: Países Bajos