Your browser doesn't support javascript.
loading
Water-Resistance-Based S-Scheme Heterojunction for Deep Mineralization of Toluene.
Li, Yuhan; Chen, Bangfu; Liu, Li; Zhu, Bicheng; Zhang, Dieqing.
Affiliation
  • Li Y; Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing, 400067, P. R. China.
  • Chen B; Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing, 400067, P. R. China.
  • Liu L; Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing, 400067, P. R. China.
  • Zhu B; Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, P. R. China.
  • Zhang D; The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shangha
Angew Chem Int Ed Engl ; 63(11): e202319432, 2024 Mar 11.
Article in En | MEDLINE | ID: mdl-38233346
ABSTRACT
Deep mineralization of low concentration toluene (C7 H8 ) is one of the most significant but challenging reactions in photocatalysis. It is generally assumed that hydroxyl radicals (⋅OH) as the main reactive species contribute to the enhanced photoactivity, however, it remains ambiguous at this stage. Herein, a S-scheme ZnSn(OH)6 -based heterojunction with AlOOH as water resistant surface layer is in situ designed for tuning the free radical species and achieving deep mineralization of C7 H8 . By employing a combination of in situ DRIFTS and materials characterization techniques, we discover that the dominant intermediates such as benzaldehyde and benzoic acid instead of toxic phenols are formed under the action of holes (h+ ) and superoxide radicals (⋅O2 - ). These dominant intermediates turn out to greatly decrease the ring-opening reaction barrier. This study offers new possibilities for rationally tailoring the active species and thus directionally producing dominant intermediates via designing water resistant surface layer.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2024 Document type: Article