Your browser doesn't support javascript.
loading
Intense pulsed light annealing of solution-based indium-gallium-zinc-oxide semiconductors with printed Ag source and drain electrodes for bottom gate thin film transistors.
Moon, Chang-Jin; Park, Jong-Whi; Jang, Yong-Rae; Kim, Hak-Sung.
Affiliation
  • Moon CJ; Department of Mechanical Engineering, Hanyang University, Haengdang-Dong, Seongdong-gu, Seoul, 133-791, Republic of Korea.
  • Park JW; Department of Mechanical Engineering, Hanyang University, Haengdang-Dong, Seongdong-gu, Seoul, 133-791, Republic of Korea.
  • Jang YR; Department of Mechanical Engineering, Hanyang University, Haengdang-Dong, Seongdong-gu, Seoul, 133-791, Republic of Korea.
  • Kim HS; Department of Mechanical Engineering, Hanyang University, Haengdang-Dong, Seongdong-gu, Seoul, 133-791, Republic of Korea. kima@hanyang.ac.kr.
Sci Rep ; 14(1): 1566, 2024 Jan 18.
Article in En | MEDLINE | ID: mdl-38238447
ABSTRACT
In this study, an intense pulsed light (IPL) annealing process for a printed multi-layered indium-gallium-zinc-oxide (IGZO) and silver (Ag) electrode structure was developed for a high performance all-printed inorganic thin film transistor (TFT). Through a solution process using IGZO precursor and Ag ink, the bottom gate structure TFT was fabricated. The spin coating method was used to form the IGZO semiconductor layer on a heavily-doped silicon wafer covered with thermally grown silicon dioxide. The annealing process of the IGZO layer utilized an optimized IPL irradiation process. The Ag inks were printed on the IGZO layer by screen printing to form the source and drain (S/D) pattern. This S/D pattern was dried by near infrared radiation (NIR) and the dried S/D pattern was sintered with intense pulsed light by varying the irradiation energy. The performances of the all-printed TFT such as the field effect mobility and on-off ratio electrical transfer properties were measured by a parameter analyzer. The interfacial analysis including the contact resistance and cross-sectional microstructure analysis is essential because diffusion phenomenon can occur during the annealing and sintering process. Consequently, this TFT device showed noteworthy performance (field effect mobility 7.96 cm2/V s, on/off ratio 107). This is similar performance compared to a conventional TFT, which is expected to open a new path in the printed metal oxide-based TFT field.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2024 Document type: Article Country of publication: Reino Unido

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2024 Document type: Article Country of publication: Reino Unido