Your browser doesn't support javascript.
loading
Construction and Preclinical Evaluation of 124I/125I-Labeled Antibody Targeting T Cell Immunoglobulin and Mucin Domain-3.
Tao, Jinping; Zeng, Ziqing; He, Chengxue; Meng, Lin; Zhou, Wenyuan; Ren, Ya'nan; Ma, Xiaopan; Wang, Zilei; Liu, Jiayue; Li, Dapeng; Zhang, Qian; Zhao, Chuanke; Yang, Zhi; Zhu, Hua.
Affiliation
  • Tao J; School of Medicine, Guizhou University, Guiyang 550025, China.
  • Zeng Z; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine
  • He C; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine
  • Meng L; School of Medicine, Guizhou University, Guiyang 550025, China.
  • Zhou W; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine
  • Ren Y; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
  • Ma X; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine
  • Wang Z; School of Medicine, Guizhou University, Guiyang 550025, China.
  • Liu J; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine
  • Li D; School of Medicine, Guizhou University, Guiyang 550025, China.
  • Zhang Q; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine
  • Zhao C; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine
  • Yang Z; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine
  • Zhu H; School of Medicine, Guizhou University, Guiyang 550025, China.
Mol Pharm ; 21(2): 944-956, 2024 Feb 05.
Article in En | MEDLINE | ID: mdl-38270082
ABSTRACT
T cell immunoglobulin and mucin domain-3 (TIM3; HAVCR2) is a transmembrane protein that exerts negative regulatory control over T cell responses. Studies have demonstrated an upregulation of TIM3 expression in tumor-infiltrating lymphocytes (TILs) in cancer patients. In this investigation, a series of monoclonal antibodies targeting TIM3 were produced by hybridoma technology. Among them, C23 exhibited favorable biological properties. To enable specific binding, we developed a 124I/125I-C23 radio-tracer via N-bromosuccinimide (NBS)-mediated labeling of the monoclonal antibody C23. Binding affinity and specificity were assessed using the 293T-TIM3 cell line, which overexpresses TIM3, and the parent 293T cells. Furthermore, biodistribution and in vivo imaging of 124I/125I-C23 were examined in HEK293TIM3 xenograft models and allograft models of 4T1 (mouse breast cancer cells) and CT26 (mouse colon cancer cells). Micro-PET/CT imaging was conducted at intervals of 4, 24, 48, 72, and/or 96 h post intravenous administration of 3.7-7.4 MBq 124I-C23 in the respective model mice. Additionally, immunohistochemistry (IHC) staining of TIM3 expression in dissected tumor organs was performed, along with an assessment of the corresponding expression of Programmed Death 1 (PD1), CD3, and CD8 in the tumors. The C23 monoclonal antibody (mAb) specifically binds to TIM3 protein with a dissociation constant of 23.28 nM. The 124I-C23 and 125I-C23 radio-tracer were successfully prepared with a labeling yield of 83.59 ± 0.35% and 92.35 ± 0.20%, respectively, and over 95.00% radiochemical purity. Stability results indicated that the radiochemical purity of 124I/125I-C23 in phosphate-buffered saline (PBS) and 5% human serum albumin (HSA) was still >80% after 96 h. 125I-C23 uptake in 293T-TIM3 cells was 2.80 ± 0.12%, which was significantly higher than that in 293T cells (1.08 ± 0.08%), and 125I-C23 uptake by 293T-TIM3 cells was significantly blocked at 60 and 120 min in the blocking groups. Pharmacokinetics analysis in vivo revealed an elimination time of 14.62 h and a distribution time of 0.4672 h for 125I-C23. Micro-PET/CT imaging showed that the 124I-C23 probe uptake in the 293T-TIM3 model significantly differed from that of the negative control group and blocking group. In the humanized mouse model, the 124I-C23 probe had obvious specific uptake in the 4T1 and CT26 models and maximum uptake at 24 h in tumor tissues (SUVmax (the maximum standardized uptake value) in 4T1 and CT26 humanized TIM3 murine tumor models 0.59 ± 0.01 and 0.76 ± 0.02, respectively). Immunohistochemistry of tumor tissues from these mouse models showed comparable TIM3 expression. CD3 and CD8 cells and PD-1 expression were also observed in TIM3-expressing tumor tissues. The TIM3-targeting antibody C23 showed good affinity and specificity. The 124I/125I-C23 probe has obvious targeting specificity for TIM3 in vitro and in vivo. Our results suggest that 124I/125I-C23 is a promising tracer for TIM3 imaging and may have great potential in monitoring immune checkpoint drug efficacy.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Antibodies, Monoclonal / Neoplasms Limits: Animals / Humans Language: En Journal: Mol Pharm Journal subject: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Antibodies, Monoclonal / Neoplasms Limits: Animals / Humans Language: En Journal: Mol Pharm Journal subject: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Year: 2024 Document type: Article Affiliation country: China
...