Your browser doesn't support javascript.
loading
Label-Free In Vivo Monitoring of Lipid Droplets for Real-Time Assessment of Adipose Activator-Induced Tumor Suppression.
Qu, Junle; Luo, Guoquan; Li, Shuqi; Qi, Kang; Hu, Rui; Li, Jia; Liu, Liwei; Chen, Yu; Lin, Danying.
Affiliation
  • Qu J; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Luo G; Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
  • Li S; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Qi K; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Hu R; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Li J; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Liu L; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Chen Y; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Lin D; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Anal Chem ; 2024 Feb 05.
Article in En | MEDLINE | ID: mdl-38315069
ABSTRACT
To enhance our comprehension of the fundamental mechanisms driving tumor metabolism and metastasis, it is essential to dynamically monitor intratumoral lipid droplet (LD) and collagen processes in vivo. Traditional LD analysis in tumors predominantly relies on observations of in vitro cells or tissue slices, which unfortunately hinder real-time insights into the dynamic behavior of LDs during in vivo tumor progression. In this study, we developed a dual-modality imaging technique that combines coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy for in vivo monitoring of tumor LDs and collagen alterations, assisted by a murine breast cancer 4T1 cell-based dorsal skinfold window. Specifically, we accomplished real-time observations and quantitative analysis of the LD size, density, and collagen alignment within living tumors through CARS/SHG imaging. Additionally, our findings demonstrate that real-time LD monitoring provides a valuable means of assessing the efficacy of anticancer drugs in vivo. We evaluated the impact of adipose activators on lipid metabolism, oxidative stress, and tumor suppression by monitoring changes in LD size and density. Overall, this study highlights the potential of dual-modality CARS/SHG microscopy as a sensitive and flexible tool for antitumor therapeutic strategies.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Anal Chem Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Anal Chem Year: 2024 Document type: Article Affiliation country: China