Your browser doesn't support javascript.
loading
Impacts of the aerosol mixing state and new particle formation on CCN in summer at the summit of Mount Tai (1534m) in Central East China.
Wu, Zihao; Wang, Honglei; Yin, Yan; Shen, Lijuan; Chen, Kui; Chen, Jinghua; Zhen, Zhongxiu; Cui, Yi; Ke, Yue; Liu, Sihan; Zhao, Tianliang; Lin, Wen.
Affiliation
  • Wu Z; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • Wang H; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China; Fujian Key Laboratory of Severe Weat
  • Yin Y; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • Shen L; School of Atmosphere and Remote Sensing, Wuxi University, Wuxi 214105, China.
  • Chen K; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • Chen J; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • Zhen Z; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
  • Cui Y; Weather Modification Center of Hebei Province, Shijiazhuang 050022, China.
  • Ke Y; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • Liu S; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • Zhao T; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • Lin W; Fujian Key Laboratory of Severe Weather and Key Laboratory of Straits Severe Weather, China Meteorological Administration, Fuzhou 350001, China.
Sci Total Environ ; 918: 170622, 2024 Mar 25.
Article in En | MEDLINE | ID: mdl-38325490
ABSTRACT
In this study, the aerosol size distributions, cloud condensation nuclei (CCN) number concentration (NCCN), single-particle chemical composition and meteorological data were collected from May 12 to June 8, 2017, at the summit of Mt. Tai. The effects of new particle formation (NPF) events and aerosol chemical components on CCN at Mt. Tai were analyzed in detail. The results showed that, NPF events significantly enhanced the CCN population, and the enhancement effect increased with increasing supersaturation (SS) value at Mt.Tai. NCCN at SS ranging from 0.1 to 0.9 % on NPF days was 10.9 %, 36.5 %, 44.6 %, 53.5 % and 51.5 % higher than that on non-NPF days from 1000-1300 as NPF events progressed. The effect of chemical components on CCN activation under the influence of NPF events was greater than that in the absence of NPF events. The correlation coefficients of EC-Nitrate particles (EC-Sulfate particles) and CCN at all SS levels on NPF days were 1.31-1.59 times (1.17-1.35 times) higher than those on non-NPF days. Nitrate particles promoted CCN activation but sulfate particles inhibited activation at Mt. Tai. There are differences or even opposite effects of the same group of particles on CCN activation under the influence of NPF events in different air masses. EC-Sulfate particles inhibited CCN activation at all SS levels for type I but weakly promoted activation at lower SS ranging from 0.1 to 0.3 % and weakly inhibited it at higher 0.9 % SS for type II. OCEC particles significantly inhibited CCN activation for type II, and this effect decreased with increasing SS. OCEC particles only weakly inhibited activation at SS ranging from 0.5 to 0.7 % for type I. OCEC particles only weakly inhibited this process at 0.1 % SS, while they very weakly promoted activation for SS > 0.1 %. This reveals that the CCN activity is not only related to the chemical composition of the particles, but the mixing state also has an important effect on the CCN activity.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ / Sci. total environ / Science of the total environment Year: 2024 Document type: Article Affiliation country: China Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ / Sci. total environ / Science of the total environment Year: 2024 Document type: Article Affiliation country: China Country of publication: Países Bajos