Your browser doesn't support javascript.
loading
Switchable Adhesive Based on Shape Memory Polymer with Micropillars of Different Heights for Laser-Driven Noncontact Transfer Printing.
Luo, Hongyu; Li, Chenglong; Wang, Suhao; Zhang, Shun; Song, Jizhou.
Affiliation
  • Luo H; Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, and State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
  • Li C; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China.
  • Wang S; Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
  • Zhang S; Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, and State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
  • Song J; Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, and State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
ACS Appl Mater Interfaces ; 16(7): 9443-9452, 2024 Feb 21.
Article in En | MEDLINE | ID: mdl-38335021
ABSTRACT
Switchable adhesive is essential to develop transfer printing, which is an advanced heterogeneous material integration technique for developing electronic systems. Designing a switchable adhesive with strong adhesion strength that can also be easily eliminated to enable noncontact transfer printing still remains a challenge. Here, we report a simple yet robust design of switchable adhesive based on a thermally responsive shape memory polymer with micropillars of different heights. The adhesive takes advantage of the shape-fixing property of shape memory polymer to provide strong adhesion for a reliable pick-up and the various levels of shape recovery of micropillars under laser heating to eliminate the adhesion for robust printing in a noncontact way. Systematic experimental and numerical studies reveal the adhesion switch mechanism and provide insights into the design of switchable adhesives. This switchable adhesive design provides a good solution to develop laser-driven noncontact transfer printing with the capability of eliminating the influence of receivers on the performance of transfer printing. Demonstrations of transfer printing of silicon wafers, microscale Si platelets, and micro light emitting diode (µ-LED) chips onto various challenging nonadhesive receivers (e.g., sandpaper, stainless steel bead, leaf, or glass) to form desired two-dimensional or three-dimensional layouts illustrate its great potential in deterministic assembly.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China Country of publication: Estados Unidos