Your browser doesn't support javascript.
loading
Emergence of a clinical Salmonella enterica serovar 1,4,[5], 12: i:-isolate, ST3606, in China with susceptibility decrease to ceftazidime-avibactam carrying a novel blaCTX-M-261 variant and a blaNDM-5.
Wei, Jie; Shen, Shimei; Zhang, Qinghuan; Lu, Jinping; Mao, Shenglan; Zou, Chunhong; Zhou, Hua; Wei, YeLin; Ou, Xingyi; Huang, Jinyu; Wang, Deqiang; Li, Xiaobin; Wan, Qun; Shan, Baoju; Zhang, Zhenlin.
Affiliation
  • Wei J; Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
  • Shen S; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
  • Zhang Q; Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
  • Lu J; Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
  • Mao S; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
  • Zou C; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
  • Zhou H; Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.
  • Wei Y; The First People's Hospital of Xiaoshan Hangzhou, Hangzhou, China.
  • Ou X; Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.
  • Huang J; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
  • Wang D; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
  • Li X; Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.
  • Wan Q; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China. wanq23@mail.sysu.edu.cn.
  • Shan B; Pediatric Research Institute; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hos
  • Zhang Z; Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China. 481080@hospital.cqmu.edu.cn.
Eur J Clin Microbiol Infect Dis ; 43(5): 829-840, 2024 May.
Article in En | MEDLINE | ID: mdl-38388738
ABSTRACT

PURPOSE:

The detection rate of Salmonella enterica serovar 1,4,[5], 12 i - (S. 1,4,[5], 12 i -) has increased as the most common serotype globally. A S. 1,4,[5], 12 i - strain named ST3606 (sequence type 34), isolated from a fecal specimen of a child with acute diarrhea hospitalized in a tertiary hospital in China, was firstly reported to be resistant to carbapenem and ceftazidime-avibactam. The aim of this study was to characterize the whole-genome sequence of S. 1,4,[5], 12 i - isolate, ST3606, and explore its antibiotic resistance genes and their genetic environments.

METHODS:

The genomic DNA of S. 1,4,[5], 12 i - ST3606 was extracted and performed with single-molecule real-time sequencing. Resistance genes, plasmid replicon type, mobile elements, and multilocus sequence types (STs) of ST3606 were identified by ResFinder 3.2, PlasmidFinder, OriTfinder database, ISfinder database, and MLST 2.0, respectively. The conjugation experiment was utilized to evaluate the conjugation frequency of pST3606-2. Protein expression and enzyme kinetics experiments of CTX-M were performed to analyze hydrolytic activity of a novel CTX-M-261 enzyme toward several antibiotics.

RESULTS:

Single-molecule real-time sequencing revealed the coexistence of a 109-kb IncI1-Iα plasmid pST3606-1 and a 70.5-kb IncFII plasmid pST3606-2. The isolate carried resistance genes, including blaNDM-5, sul1, qacE, aadA2, and dfrA12 in pST3606-1, blaTEM-1B, aac(3)-lld, and blaCTX-M-261, a novel blaCTX-M-1 family member, in pST3606-2, and aac(6')-Iaa in chromosome. The blaCTX-M-261 was derived from blaCTX-M-55 by a single-nucleotide mutation 751G>A leading to amino acid substitution of Val for Met at position 251 (Val251Met), which conferred CTX-M increasing resistance to ceftazidime verified by antibiotics susceptibility testing of transconjugants carrying pST3606-2 and steady-state kinetic parameters of CTX-M-261. pST3606-1 is an IncI1-α incompatibility type that shares homology with plasmids of pC-F-164_A-OXA140, pE-T654-NDM-5, p_dm760b_NDM-5, and p_dmcr749c_NDM-5. The conjugation experiment demonstrated that pST3606-2 was successfully transferred to the Escherichia coli recipient C600 with four modules of OriTfinder.

CONCLUSION:

Plasmid-mediated horizontal transfer plays an important role in blaNDM-5 and blaCTX-M-261 dissemination, which increases the threat to public health due to the resistance to most ß-lactam antibiotics. This is the first report of blaCTX-M-261 and blaNDM-5 in S. 1,4,[5], 12 i -. The work provides insights into the enzymatic function and demonstrates the ongoing evolution of CTX-M enzymes and confirms urgency to control resistance of S. 1,4,[5], 12 i -.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Salmonella Infections / Beta-Lactamases / Microbial Sensitivity Tests / Ceftazidime / Salmonella enterica / Drug Combinations / Azabicyclo Compounds / Anti-Bacterial Agents Limits: Humans Country/Region as subject: Asia Language: En Journal: Eur J Clin Microbiol Infect Dis Journal subject: DOENCAS TRANSMISSIVEIS / MICROBIOLOGIA Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Salmonella Infections / Beta-Lactamases / Microbial Sensitivity Tests / Ceftazidime / Salmonella enterica / Drug Combinations / Azabicyclo Compounds / Anti-Bacterial Agents Limits: Humans Country/Region as subject: Asia Language: En Journal: Eur J Clin Microbiol Infect Dis Journal subject: DOENCAS TRANSMISSIVEIS / MICROBIOLOGIA Year: 2024 Document type: Article Affiliation country: China