Your browser doesn't support javascript.
loading
Overcoming the Unfavorable Effects of "Boltzmann Tyranny:" Ultra-Low Subthreshold Swing in Organic Phototransistors via One-Transistor-One-Memristor Architecture.
Yang, Shuyuan; Yuan, Jiangyan; Wang, Zhaofeng; Wu, Xianshuo; Shen, Xianfeng; Zhang, Yu; Ma, Chunli; Wang, Jiamin; Lei, Shengbin; Li, Rongjin; Hu, Wenping.
Affiliation
  • Yang S; Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
  • Yuan J; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
  • Wang Z; Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
  • Wu X; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
  • Shen X; Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
  • Zhang Y; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
  • Ma C; Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
  • Wang J; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
  • Lei S; Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
  • Li R; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
  • Hu W; Ji Hua Laboratory Foshan, Guangdong, 528200, China.
Adv Mater ; 36(23): e2309337, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38416878
ABSTRACT
Organic phototransistors (OPTs), as photosensitive organic field-effect transistors (OFETs), have gained significant attention due to their pivotal roles in imaging, optical communication, and night vision. However, their performance is fundamentally limited by the Boltzmann distribution of charge carriers, which constrains the average subthreshold swing (SSave) to a minimum of 60 mV/decade at room temperature. In this study, an innovative one-transistor-one-memristor (1T1R) architecture is proposed to overcome the Boltzmann limit in conventional OFETs. By replacing the source electrode in an OFET with a memristor, the 1T1R device exploits the memristor's sharp resistance state transitions to achieve an ultra-low SSave of 18 mV/decade. Consequently, the 1T1R devices demonstrate remarkable sensitivity to photo illumination, with a high specific detectivity of 3.9 × 109 cm W-1Hz1/2, outperforming conventional OPTs (4.9 × 104 cm W-1Hz1/2) by more than four orders of magnitude. The 1T1R architecture presents a potentially universal solution for overcoming the detrimental effects of "Boltzmann tyranny," setting the stage for the development of ultra-low SSave devices in various optoelectronic applications.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country: China