Fabrication of p-n Heterostructured Photocatalysts with Triazine-Based Covalent Organic Framework and CuInS2 for High-Efficiency CO2 Reduction.
ACS Appl Mater Interfaces
; 16(11): 13839-13848, 2024 Mar 20.
Article
in En
| MEDLINE
| ID: mdl-38446719
ABSTRACT
The application of covalent organic frameworks (COFs) for the photocatalytic reduction of CO2 is mostly limited by severe charge recombination and low sunlight utilization. Herein, a triazine-based COF with an electron-rich and large π-conjugated system (TCOF) was employed as a building block and integrated with CuInS2 (CIS) to construct a noble-metal-free and high-efficiency photocatalyst for CO2 reduction. The in situ growth of CIS nanosheets on TCOF creates a p-n heterojunction, named CIS@TCOF. Compared with TCOF, the CIS@TCOF heterostructure exhibits a dramatically boosted photocatalytic performance in the reduction of CO2. The produced HCOOH yield over 10 wt % CIS@TCOF can be up to 171.2 µmol g-1 h-1 under visible light irradiation with good reproducibility, which is about 3 times as high as that over TCOF. Further in-depth studies indicate that the introduction of CIS not only enhances the visible light utilization but also restrains the recombination of photogenerated electron-hole pairs efficiently and facilitates the photoinduced charge transfer via the p-n heterojunction system due to the unique structural and compositional features. This research shows the great potential of COFs as efficient photocatalytic carbon fixation materials and provides a versatile route to construct semiconductor-COF heterostructures for photocatalysis.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
ACS Appl Mater Interfaces
Journal subject:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Year:
2024
Document type:
Article
Country of publication:
Estados Unidos