Your browser doesn't support javascript.
loading
Fabrication of p-n Heterostructured Photocatalysts with Triazine-Based Covalent Organic Framework and CuInS2 for High-Efficiency CO2 Reduction.
Chang, Shuqing; Feng, Yan; Zhao, Yuncai; Fu, Yanghe; Jia, Huilin; Gao, Yijing; Zhang, Fumin; Ma, Rui; Lu, Xinqing; Fan, Maohong; Zhu, Weidong.
Affiliation
  • Chang S; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, P. R. China.
  • Feng Y; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, P. R. China.
  • Zhao Y; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, P. R. China.
  • Fu Y; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, P. R. China.
  • Jia H; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, P. R. China.
  • Gao Y; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, P. R. China.
  • Zhang F; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, P. R. China.
  • Ma R; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, P. R. China.
  • Lu X; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, P. R. China.
  • Fan M; College of Engineering and Physical Sciences, School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States.
  • Zhu W; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, P. R. China.
ACS Appl Mater Interfaces ; 16(11): 13839-13848, 2024 Mar 20.
Article in En | MEDLINE | ID: mdl-38446719
ABSTRACT
The application of covalent organic frameworks (COFs) for the photocatalytic reduction of CO2 is mostly limited by severe charge recombination and low sunlight utilization. Herein, a triazine-based COF with an electron-rich and large π-conjugated system (TCOF) was employed as a building block and integrated with CuInS2 (CIS) to construct a noble-metal-free and high-efficiency photocatalyst for CO2 reduction. The in situ growth of CIS nanosheets on TCOF creates a p-n heterojunction, named CIS@TCOF. Compared with TCOF, the CIS@TCOF heterostructure exhibits a dramatically boosted photocatalytic performance in the reduction of CO2. The produced HCOOH yield over 10 wt % CIS@TCOF can be up to 171.2 µmol g-1 h-1 under visible light irradiation with good reproducibility, which is about 3 times as high as that over TCOF. Further in-depth studies indicate that the introduction of CIS not only enhances the visible light utilization but also restrains the recombination of photogenerated electron-hole pairs efficiently and facilitates the photoinduced charge transfer via the p-n heterojunction system due to the unique structural and compositional features. This research shows the great potential of COFs as efficient photocatalytic carbon fixation materials and provides a versatile route to construct semiconductor-COF heterostructures for photocatalysis.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Country of publication: Estados Unidos