Your browser doesn't support javascript.
loading
ACE2-using merbecoviruses: Further evidence of convergent evolution of ACE2 recognition by NeoCoV and other MERS-CoV related viruses.
Xiong, Qing; Ma, Chengbao; Liu, Chen; Tong, Fei; Huang, Meiling; Yan, Huan.
Affiliation
  • Xiong Q; State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
  • Ma C; State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
  • Liu C; State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
  • Tong F; State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
  • Huang M; State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
  • Yan H; State Key Laboratory of Virology, Institute for Vaccine Research and Modern Virology Research Center, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.
Cell Insight ; 3(1): 100145, 2024 Feb.
Article in En | MEDLINE | ID: mdl-38476250
ABSTRACT
Angiotensin-converting enzyme 2 (ACE2) was recognized as an entry receptor shared by coronaviruses from Sarbecovirus and Setracovirus subgenera, including three human coronaviruses SARS-CoV, SARS-CoV-2, and NL63. We recently disclosed that NeoCoV and three other merbecoviruses (PDF-2180, MOW15-22, PnNL 2018B), which are MERS-CoV relatives found in African and European bats, also utilize ACE2 as their functional receptors through unique receptor binding mechanisms. This unexpected receptor usage assumes significance, particularly in light of the prior recognition of Dipeptidyl peptidase-4 (DPP4) as the only known protein receptor for merbecoviruses. In contrast to other ACE2-using coronaviruses, NeoCoV and PDF-2180 engage a distinct and relatively compact binding surface on ACE2, facilitated by protein-glycan interactions, which is demonstrated by the Cryo-EM structures of the receptor binding domains (RBDs) of these viruses in complex with a bat ACE2 orthologue. These findings further support the hypothesis that phylogenetically distant coronaviruses, characterized by distinct RBD structures, can independently evolve to acquire ACE2 affinity during inter-species transmission and adaptive evolution. To date, these viruses have exhibited limited efficiency in entering human cells, although single mutations like T510F in NeoCoV can overcome the incompatibility with human ACE2. In this review, we present a comprehensive overview of ACE2-using merbecoviruses, summarize our current knowledge regarding receptor usage and host tropism determination, and deliberate on potential strategies for prevention and intervention, with the goal of mitigating potential future outbreaks caused by spillover of these viruses.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Cell Insight Year: 2024 Document type: Article Affiliation country: China Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Cell Insight Year: 2024 Document type: Article Affiliation country: China Country of publication: Países Bajos