Your browser doesn't support javascript.
loading
Sensing of dietary amino acids and regulation of calcium dynamics in adipose tissues through Adipokinetic hormone in Drosophila.
bioRxiv ; 2024 Mar 08.
Article in En | MEDLINE | ID: mdl-38496667
ABSTRACT
Nutrient sensing and the subsequent metabolic responses are fundamental functions of animals, closely linked to diseases such as type 2 diabetes and various obesity-related diseases. Drosophila melanogaster has emerged as an excellent model for investigating metabolism and its associated disorders. In this study, we used live-cell imaging to demonstrate that the fly functional homolog of mammalian glucagon, Adipokinetic hormone (AKH), secreted from AKH hormone-producing cells (APCs) in the corpora cardiaca, stimulates intracellular Ca 2+ waves in the larval fat body/adipose tissue to promote lipid metabolism. Further, we show that specific dietary amino acids activate the APCs, leading to increased intracellular Ca 2+ and subsequent AKH secretion. Finally, a comparison of Ca 2+ dynamics in larval and adult fat bodies revealed different mechanisms of regulation, highlighting the interplay of pulses of AKH secretion, extracellular diffusion of the hormone, and intercellular communication through gap junctions. Our study underscores the suitability of Drosophila as a powerful model for exploring real-time nutrient sensing and inter-organ communication dynamics.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioRxiv Year: 2024 Document type: Article Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioRxiv Year: 2024 Document type: Article Country of publication: Estados Unidos