Your browser doesn't support javascript.
loading
Tris-assisted one-step fabrication of functional carbon dots for specific folate receptor positive-expressed cancer cell imaging.
Tong, Lili; Wang, Xiuxiu; Zhang, Xue; Xu, Chang; Qiao, Meng; Chen, Zhenzhen; Tang, Bo.
Affiliation
  • Tong L; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China. Electr
  • Wang X; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China.
  • Zhang X; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China.
  • Xu C; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China.
  • Qiao M; Department of Dermatology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong, 250014, PR China.
  • Chen Z; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China.
  • Tang B; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, PR China; Qingda
Talanta ; 273: 125904, 2024 Jun 01.
Article in En | MEDLINE | ID: mdl-38508131
ABSTRACT
Specific staining of cancer cells is momentous for cancer research. Nanoprobe with multivalent recognition is emerging as powerful tools for bioimaging, but the nonspecific cell uptake and complex functional modification procedures are still obstacles for specific detection and convenient synthesis. Carbon dots (CDs) with an intrinsic targeting ability, excellent optical properties and biocompatibility acquired from an efficient one-step fabrication procedure were urgently desired in specific cancer cells visualization. Herein, inspired by the interrelationships between interface and biomolecular mechanisms, we suggested that it was possible to construct CDs with the desired characteristics for folate receptor (FR) positive-expressed cancer cell imaging via rich hydroxyl groups Tris-assisted one-step hydrothermal treatment of folate acid (FA) and l-Arginine (L-Arg) precursors. The prepared small-sized F-CDs were equipped with abundant hydroxyl, pterin and negative charge surface, and possessed environmental friendliness, outstanding photostability and biocompatibility. Moreover, F-CDs had an intrinsic FR positive-expressed cancer cell targeting ability without any post-modification of the ligands. Rich hydroxyl groups play a vital role in endowing the optical properties and biological effects of F-CDs. F-CDs could be used as a promising candidate for FR-expressed cancer cell labeling and tracking. In addition, the caveolae-mediated endocytosis pathway of F-CDs was ascertained. More importantly, experimental results confirmed that the combination of physicochemical properties may provide an efficient strategy to overcome non-specific cell uptake interactions for cell labeling. Our strategy put forward a promising alternative to design fluorescent CDs for extensive chemical and biomedical applications.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Quantum Dots / Neoplasms Language: En Journal: Talanta Year: 2024 Document type: Article Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Quantum Dots / Neoplasms Language: En Journal: Talanta Year: 2024 Document type: Article Country of publication: Países Bajos