Ion adsorption promotes Frank-van der Merwe growth of 2D transition metal tellurides.
iScience
; 27(4): 109378, 2024 Apr 19.
Article
in En
| MEDLINE
| ID: mdl-38523797
ABSTRACT
Reliable synthesis methods for high-quality, large-sized, and uniform two-dimensional (2D) transition-metal dichalcogenides (TMDs) are crucial for their device applications. However, versatile approaches to growing high-quality, large-sized, and uniform 2D transition-metal tellurides are rare. Here, we demonstrate an ion adsorption strategy that facilitates the Frank-van der Merwe growth of 2D transition-metal tellurides. By employing this method, we grow MoTe2 and WTe2 with enhanced lateral size, reduced thickness, and improved uniformity. Comprehensive characterizations confirm the high quality of as-grown MoTe2. Moreover, various characterizations verify the adsorption of K+ and Cl- ions on the top surface of MoTe2. X-ray photoelectron spectroscopy (XPS) analysis reveals that the MoTe2 is stoichiometric without K+ and Cl- ions and exhibits no discernable oxidation after washing. This top surface control strategy provides a new controlling knob to optimize the growth of 2D transition-metal tellurides and holds the potential for generalized to other 2D materials.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
IScience
Year:
2024
Document type:
Article
Affiliation country:
China
Country of publication:
Estados Unidos