Your browser doesn't support javascript.
loading
A key gene, violaxanthin de-epoxidase-like 1, enhances fucoxanthin accumulation in Phaeodactylum tricornutum.
Li, Chenjie; Pan, Yufang; Yin, Wenxiu; Liu, Jin; Hu, Hanhua.
Affiliation
  • Li C; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
  • Pan Y; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Yin W; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
  • Liu J; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
  • Hu H; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
Biotechnol Biofuels Bioprod ; 17(1): 49, 2024 Apr 02.
Article in En | MEDLINE | ID: mdl-38566219
ABSTRACT

BACKGROUND:

Fucoxanthin has been widely investigated owing to its beneficial biological properties, and the model diatom Phaeodactylum tricornutum, possessing fucoxanthin (Fux) chlorophyll proteins as light-harvesting systems, is considered to have the potential to become a commercial cell factory for the pigment production.

RESULTS:

Here, we compared the pigment contents in 10 different P. tricornutum strains from the globe, and found that strain CCMP631 (Pt6) exhibited the highest Fux content but with a low biomass. Comparison of mRNA levels revealed that higher Fux content in Pt6 was related with the higher expression of gene violaxanthin de-epoxidase-like (VDL) protein 1 (VDL1), which encodes the enzyme catalyzing the tautomerization of violaxanthin to neoxanthin in Fux biosynthesis pathway. Single nucleotide variants of VDL1 gene and allele-specific expression in strains Pt1 (the whole genome sequenced strain CCMP632) and Pt6 were analyzed, and overexpressing of each of the 4 VDL1 alleles, two from Pt1 and two from Pt6, in strain Pt1 leads to an increase in downstream product diadinoxanthin and channels the pigments towards Fux biosynthesis. All the 8 VDL1 overexpression (OE) lines showed significant increases by 8.2 to 41.7% in Fux content without compromising growth, and VDL1 Allele 2 OE lines even exhibited the higher cell density on day 8, with an increase by 24.2-28.7% in two Pt1VDL1-allele 2 OE lines and 7.1-11.1% in two Pt6VDL1-allele 2 OE lines, respectively.

CONCLUSIONS:

The results reveal VDL1, localized in the plastid stroma, plays a key role in Fux over-accumulation in P. tricornutum. Overexpressing VDL1, especially allele 2, improved both the Fux content and growth rate, which provides a new strategy for the manipulation of Fux production in the future.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biotechnol Biofuels Bioprod Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biotechnol Biofuels Bioprod Year: 2024 Document type: Article Affiliation country: China