Your browser doesn't support javascript.
loading
Optimizing cell voltage dependence on size of carbon nanotube-based electrodes in Na-ion and K-ion batteries.
Liu, Xia; Gong, Jiacheng; Jiang, Yizhi; He, Xiao; Yang, Jinrong.
Affiliation
  • Liu X; Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. jryang@chem.ecnu.edu.cn.
  • Gong J; Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. jryang@chem.ecnu.edu.cn.
  • Jiang Y; Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. jryang@chem.ecnu.edu.cn.
  • He X; Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. jryang@chem.ecnu.edu.cn.
  • Yang J; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China. xiaohe@phy.ecnu.edu.cn.
Phys Chem Chem Phys ; 26(15): 12027-12034, 2024 Apr 17.
Article in En | MEDLINE | ID: mdl-38576389
ABSTRACT
Sodium-ion batteries (NIBs) and potassium-ion batteries (KIBs) are gaining extensive attention as promising alternatives to lithium-ion batteries owing to their superior energy density and cost-effectiveness. However, the larger ionic radius of Na+ and K+ ions in comparison to Li+ ions poses a challenge in designing anode materials characterized by enduring structures and elevated voltage to facilitate the efficacy of high-performance NIBs and KIBs. Carbon nanomaterials, particularly carbon nanotubes (CNTs), have emerged as a potential candidate in anode materials. Herein, we used density functional theory calculations to study the cell voltage of CNTs in relation to Na-ion and K-ion storage as a function of CNT size. The adsorption energy profiles of both Na+@CNT and K+@CNT systems exhibit a descending trend concomitant with the increase in the CNT diameter, where Na+/K+ ion primarily prefers to adsorb in the interior wall of CNT. Conversely, the cell voltage for the Na and K system gradually increases with the increasing diameter of CNT, which can be attributed to the stronger electrostatic interaction validated by energy decomposition calculation. The voltage of Na-ion adsorbed on the inter wall of (10,10) CNT attains 1.29 V, close to the previously theoretical voltage of Li-ion on the same CNT (1.35 V), while the much lower voltage pertaining to K-ion adsorption on the inter wall of (10,10) CNT just stands at 0.59 V, suggesting the viability of CNT-based electrode for NIBs but not for KIBs. These findings lay a solid foundation for delineating the interrelationship between the voltage properties of CNT as prospective anode material and their structural characteristics, thereby expanding the application of CNT-based optoelectronic devices.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Chem Chem Phys Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Chem Chem Phys Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article Affiliation country: China