Your browser doesn't support javascript.
loading
Identification and characterization of two P450 enzymes from Citrus sinensis involved in TMTT and DMNT biosyntheses and Asian citrus psyllid defense.
Sun, Xueli; Hu, Chunhua; Yi, Ganjun; Zhang, Xinxin.
Affiliation
  • Sun X; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou
  • Hu C; College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
  • Yi G; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou
  • Zhang X; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou
Hortic Res ; 11(4): uhae037, 2024 Apr.
Article in En | MEDLINE | ID: mdl-38617747
ABSTRACT
The homoterpenes (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) are the major herbivore-induced plant volatiles that help in defense directly by acting as repellants and indirectly by recruiting insects' natural enemies. In this study, DMNT and TMTT were confirmed to be emitted from citrus (Citrus sinensis) leaves infested with Asian citrus psyllid (Diaphorina citri Kuwayama; ACP), and two cytochrome P450 (CYP) genes (CsCYP82L1 and CsCYP82L2) were newly identified and characterized. Understanding the functions of these genes in citrus defense will help plan strategies to manage huanglongbing caused by Candidatus Liberibacter asiaticus (CLas) and spread by ACP. Quantitative real-time PCR (qPCR) analysis showed that CsCYP82L1 and CsCYP82L2 were significantly upregulated in citrus leaves after ACP infestation. Yeast recombinant expression and enzyme assays indicated that CsCYP82L1 and CsCYP82L2 convert (E)-nerolidol to DMNT and (E,E)-geranyllinalool to TMTT. However, citrus calluses stably overexpressing CsCYP82L1 generated only DMNT, whereas those overexpressing CsCYP82L2 produced DMNT and TMTT. Furthermore, ACPs preferred wild-type lemon (Citrus limon) over the CsCYP82L1-overexpressing line in dual-choice feeding assays and mineral oil over TMTT or DMNT in behavioral bioassays. Finally, yeast one-hybrid, electrophoretic mobility shift, and dual luciferase assays demonstrated that CsERF017, an AP2/ERF transcription factor, directly bound to the CCGAC motif and activated CsCYP82L1. Moreover, the transient overexpression of CsERF017 in lemon leaves upregulated CsCYP82L1 in the absence and presence of ACP infestation. These results provide novel insights into homoterpene biosynthesis in C. sinensis and demonstrate the effect of homoterpenes on ACP behavior, laying a foundation to genetically manipulate homoterpene biosynthesis for application in huanglongbing and ACP control.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Hortic Res Year: 2024 Document type: Article Publication country: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Hortic Res Year: 2024 Document type: Article Publication country: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM