Your browser doesn't support javascript.
loading
Ecotoxicological evaluation of surface waters in Northern Namibia.
Faulstich, L; Wollenweber, S; Reinhardt-Imjela, Ch; Arendt, R; Schulte, A; Hollert, H; Schiwy, S.
Affiliation
  • Faulstich L; Freie Universität Berlin, Berlin, Germany. leona.faulstich@fu-berlin.de.
  • Wollenweber S; Goethe-Universität Frankfurt, Frankfurt, Germany. leona.faulstich@fu-berlin.de.
  • Reinhardt-Imjela C; Goethe-Universität Frankfurt, Frankfurt, Germany.
  • Arendt R; Freie Universität Berlin, Berlin, Germany.
  • Schulte A; Freie Universität Berlin, Berlin, Germany.
  • Hollert H; Freie Universität Berlin, Berlin, Germany.
  • Schiwy S; Goethe-Universität Frankfurt, Frankfurt, Germany.
Environ Monit Assess ; 196(5): 456, 2024 Apr 17.
Article in En | MEDLINE | ID: mdl-38630192
ABSTRACT
The increasing pressure on freshwater systems due to intensive anthropogenic use is a big challenge in central-northern Namibia and its catchment areas, the Kunene and the Kavango Rivers, and the Cuvelai-Etosha Basin, that provide water for more than 1 million people. So far, there is no comprehensive knowledge about the ecological status and only few knowledge about the water quality. Therefore, it is crucial to learn about the state of the ecosystem and the ecological effects of pollutants to ensure the safe use of these resources. The surface waters of the three systems were sampled, and three bioassays were applied on three trophic levels algae, daphnia, and zebrafish embryos. Additionally, in vitro assays were performed to analyze mutagenicity (Ames fluctuation), dioxin-like potential (micro-EROD), and estrogenicity (YES) by mechanism-specific effects. The results show that acute toxicity to fish embryos and daphnia has mainly been detected at all sites in the three catchment areas. The systems differ significantly from each other, with the sites in the Iishana system showing the highest acute toxicity. At the cellular level, only weak effects were identified, although these were stronger in the Iishana system than in the two perennial systems. Algae growth was not inhibited, and no cytotoxic effects could be detected in any of the samples. Mutagenic effects and an estrogenic potential were detected at three sites in the Iishana system. These findings are critical in water resource management as the effects can adversely impact the health of aquatic ecosystems and the organisms within them.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Zebrafish / Ecosystem Limits: Animals / Humans Country/Region as subject: Africa Language: En Journal: Environ Monit Assess / Environ. monit. assess / Environmental monitoring and assessment Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Affiliation country: Alemania Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Zebrafish / Ecosystem Limits: Animals / Humans Country/Region as subject: Africa Language: En Journal: Environ Monit Assess / Environ. monit. assess / Environmental monitoring and assessment Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Affiliation country: Alemania Country of publication: Países Bajos