Your browser doesn't support javascript.
loading
Implications and Optimization of Domain Structures in IV-VI High-Entropy Thermoelectric Materials.
Liu, Yukun; Xie, Hongyao; Li, Zhi; Dos Reis, Roberto; Li, Juncen; Hu, Xiaobing; Meza, Paty; AlMalki, Muath; Snyder, G Jeffrey; Grayson, Matthew A; Wolverton, Christopher; Kanatzidis, Mercouri G; Dravid, Vinayak P.
Affiliation
  • Liu Y; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Xie H; International Institute of Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States.
  • Li Z; Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
  • Dos Reis R; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Li J; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Hu X; International Institute of Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States.
  • Meza P; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • AlMalki M; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Snyder GJ; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Grayson MA; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Wolverton C; Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 1261, Saudi Arabia.
  • Kanatzidis MG; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
  • Dravid VP; Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States.
J Am Chem Soc ; 146(18): 12620-12635, 2024 May 08.
Article in En | MEDLINE | ID: mdl-38669614
ABSTRACT
High-entropy semiconductors are now an important class of materials widely investigated for thermoelectric applications. Understanding the impact of chemical and structural heterogeneity on transport properties in these compositionally complex systems is essential for thermoelectric design. In this work, we uncover the polar domain structures in the high-entropy PbGeSnSe1.5Te1.5 system and assess their impact on thermoelectric properties. We found that polar domains induced by crystal symmetry breaking give rise to well-structured alternating strain fields. These fields effectively disrupt phonon propagation and suppress the thermal conductivity. We demonstrate that the polar domain structures can be modulated by tuning crystal symmetry through entropy engineering in PbGeSnAgxSbxSe1.5+xTe1.5+x. Incremental increases in the entropy enhance the crystal symmetry of the system, which suppresses domain formation and loses its efficacy in suppressing phonon propagation. As a result, the room-temperature lattice thermal conductivity increases from κL = 0.63 Wm-1 K-1 (x = 0) to 0.79 Wm-1 K-1 (x = 0.10). In the meantime, the increase in crystal symmetry, however, leads to enhanced valley degeneracy and improves the weighted mobility from µw = 29.6 cm2 V-1 s-1 (x = 0) to 35.8 cm2 V-1 s-1 (x = 0.10). As such, optimal thermoelectric performance can be achieved through entropy engineering by balancing weighted mobility and lattice thermal conductivity. This work, for the first time, studies the impact of polar domain structures on thermoelectric properties, and the developed understanding of the intricate interplay between crystal symmetry, polar domains, and transport properties, along with the impact of entropy control, provides valuable insights into designing GeTe-based high-entropy thermoelectrics.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2024 Document type: Article Affiliation country: Estados Unidos Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2024 Document type: Article Affiliation country: Estados Unidos Country of publication: Estados Unidos