Your browser doesn't support javascript.
loading
VEGFR2 blockade inhibits glioblastoma cell proliferation by enhancing mitochondrial biogenesis.
Guo, Min; Zhang, Junhao; Han, Jiang; Hu, Yingyue; Ni, Hao; Yuan, Juan; Sun, Yang; Liu, Meijuan; Gao, Lifen; Liao, Wangjun; Ma, Chunhong; Liu, Yaou; Li, Shuijie; Li, Nailin.
Affiliation
  • Guo M; Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. guomin04@126.com.
  • Zhang J; Department of Medicine-Solna, Division of Cardiovascular Medicine, Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden.
  • Han J; Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
  • Hu Y; Department of Biopharmaceutical Sciences and National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China.
  • Ni H; Department of Biopharmaceutical Sciences and National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China.
  • Yuan J; Department of Medicine-Solna, Division of Cardiovascular Medicine, Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden.
  • Sun Y; Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
  • Liu M; Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
  • Gao L; Department of Immunology and Shandong University-Karolinska Institutet Collaborative Laboratory, Shandong University Cheeloo Medical College, School of Basic Medicine, Jinan, China.
  • Liao W; Department of Biopharmaceutical Sciences and National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), College of Pharmacy, Harbin Medical University, Harbin, China.
  • Ma C; Department of Immunology and Shandong University-Karolinska Institutet Collaborative Laboratory, Shandong University Cheeloo Medical College, School of Basic Medicine, Jinan, China.
  • Liu Y; Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
  • Li S; Department of Immunology and Shandong University-Karolinska Institutet Collaborative Laboratory, Shandong University Cheeloo Medical College, School of Basic Medicine, Jinan, China.
  • Li N; Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
J Transl Med ; 22(1): 419, 2024 May 03.
Article in En | MEDLINE | ID: mdl-38702818
ABSTRACT

BACKGROUND:

Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se.

METHODS:

VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis.

RESULTS:

VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis.

CONCLUSIONS:

VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Organelle Biogenesis / Apoptosis / Glioblastoma / Vascular Endothelial Growth Factor Receptor-2 / Cell Proliferation / Mitochondria Limits: Humans Language: En Journal: J Transl Med Year: 2024 Document type: Article Affiliation country: China Country of publication: Reino Unido

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Organelle Biogenesis / Apoptosis / Glioblastoma / Vascular Endothelial Growth Factor Receptor-2 / Cell Proliferation / Mitochondria Limits: Humans Language: En Journal: J Transl Med Year: 2024 Document type: Article Affiliation country: China Country of publication: Reino Unido