Your browser doesn't support javascript.
loading
Facile synthesis of Bi3O(OH)(AsO4)2 and simultaneous photocatalytic oxidation and adsorption of Sb(III) from wastewater.
Xiong, Qi; Ma, Xiaoqian; Zhao, Lixia; Lv, Die; Xie, Lanxin; Jiang, Liang; He, Jiao; Zhu, Huaiyong; Wang, Jiaqiang.
Affiliation
  • Xiong Q; School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Ku
  • Ma X; School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Ku
  • Zhao L; School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Ku
  • Lv D; School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Ku
  • Xie L; School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Ku
  • Jiang L; School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Ku
  • He J; School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Ku
  • Zhu H; School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Ku
  • Wang J; School of Chemical Sciences and Technology, School of Materials and Energy, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, School of Engineering, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Ku
Chemosphere ; 359: 142308, 2024 Jul.
Article in En | MEDLINE | ID: mdl-38734246
ABSTRACT
Antimony (Sb) decontamination in water is necessary owing to the worsening pollution which seriously threatens human life safety. Designing bismuth-based photocatalysts with hydroxyls have attracted growing interest because of the broad bandgap and enhanced separation efficiency of photogenerated electron/hole pairs. Until now, the available photocatalysis information regarding bismuth-based photocatalysts with hydroxyls has remained scarce and the contemporary report has been largely limited to Bi3O(OH)(PO4)2 (BOHP). Herein, Bi3O(OH)(AsO4)2 (BOHAs), a novel ultraviolet photocatalyst, was fabricated via the co-precipitation method for the first time, and developed to simultaneous photocatalytic oxidation and adsorption of Sb(III). The rate constant of Sb(III) removal by the BOHAs was 32.4, 3.0, and 4.3 times higher than those of BiAsO4, BOHP, and TiO2, respectively, indicating that the introduction of hydroxyls could increase the removal of Sb(III). Additionally, the crucial operational parameters affecting the adsorption performance (catalyst dosage, concentration, pH, and common anions) were investigated. The BOHAs maintained 85% antimony decontamination of the initial yield after five successive cycles of photocatalysis. The Sb(III) removal involved photocatalytic oxidation of adsorbed Sb(III) and subsequent adsorption of the yielded Sb(V). With the acquired knowledge, we successfully applied the photocatalyst for antimony removal from industrial wastewater. In addition, BOHAs could also be powerful photocatalysts in the photodegradation of organic pollutants studies of which are ongoing. It reveals an effective strategy for synthesizing bismuth-based photocatalysts with hydroxyls and enhancing pollutants' decontamination.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oxidation-Reduction / Water Pollutants, Chemical / Bismuth / Wastewater / Antimony Language: En Journal: Chemosphere Year: 2024 Document type: Article Country of publication: Reino Unido

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oxidation-Reduction / Water Pollutants, Chemical / Bismuth / Wastewater / Antimony Language: En Journal: Chemosphere Year: 2024 Document type: Article Country of publication: Reino Unido