Your browser doesn't support javascript.
loading
Cobalt telluride regulated by nickel for efficient electrooxidation of 5-hydroxymethylfurfural.
Li, Jiahui; Hao, Genyan; Jin, Gang; Zhao, Tao; Li, Dandan; Zhong, Dazhong; Li, Jinping; Zhao, Qiang.
Affiliation
  • Li J; College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China.
  • Hao G; Shanxi College of Technology, Shuozhou 036000, Shanxi, P. R. China.
  • Jin G; College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China.
  • Zhao T; College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China.
  • Li D; Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, P. R. China.
  • Zhong D; College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China. Electronic address: zhongdazhong@tyut.edu.cn.
  • Li J; College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China.
  • Zhao Q; College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P. R. China. Electronic address: zhaoqiang@tyut.edu.cn.
J Colloid Interface Sci ; 670: 96-102, 2024 Sep 15.
Article in En | MEDLINE | ID: mdl-38759272
ABSTRACT
Replacing the anodic oxygen evolution reaction (OER) in water splitting with 5-hydroxymethylfurfural oxidation reaction (HMFOR) can not only reduce the energy required for hydrogen production but also yield the valuable chemical 2,5-furandicarboxylic acid (FDCA). Co-based catalysts are known to be efficient for HMFOR, with high-valent Co being recognized as the main active component. However, efficiently promoting the oxidation of Co2+ to produce high-valent reactive species remains a challenge. In this study, Ni-doped CoTe (CoNiTe) nanorods were prepared as efficient catalysts for HMFOR, achieving a high HMFOR current density of 65.3 mA cm-2 at 1.50 V. Even after undergoing five successive electrolysis processes, the Faradaic efficiency (FE) remained at approximately 90.7 %, showing robust electrochemical durability. Mechanistic studies indicated that Ni doping changes the electronic configuration of Co, enhancing its charge transfer rate and facilitating the oxidation of Co2+ to high-valent CoO2 species. This work reveals the effect of Ni doping on the reconfiguration of the active phase during HMFOR.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article
...