Your browser doesn't support javascript.
loading
Upconversion-based hydrogel kit with Python-assisted analysis platform for sample-to-result detection of organophosphorus pesticide.
Kong, Minghui; Lu, Yang; Ma, Yuan; Zhao, Xu; Wu, Jiahang; Lu, Geyu; Yan, Xu; Liu, Xiaomin.
Affiliation
  • Kong M; State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
  • Lu Y; State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
  • Ma Y; State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
  • Zhao X; State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
  • Wu J; State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
  • Lu G; State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
  • Yan X; State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China. Electronic address: yanx@jlu.edu.cn.
  • Liu X; State Key Laboratory on Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China. Electronic address: xiaominliu@jlu.edu.cn.
J Colloid Interface Sci ; 670: 626-634, 2024 Sep 15.
Article in En | MEDLINE | ID: mdl-38781653
ABSTRACT
On-site quantitative analysis of pesticide residues is crucial for monitoring environmental quality and ensuring food safety. Herein, we have developed a reliable hydrogel portable kit using NaYbF4@NaYF4 Yb, Tm upconversion nanoparticles (UCNPs) combined with MnO2 nanoflakes. This portable kit is integrated with a smartphone reader and Python-assisted analysis platform to enable sample-to-result analysis for chlorpyrifos. The novel UCNPs maximizes energy donation to MnO2 acceptor by employing 100 % of activator Yb3+ in the nucleus for NIR excitation energy collection and confining emitter Tm3+ to the surface layer to shorten energy transfer distance. Under NIR excitation, efficient quenching of upconversion blue-violet emission by MnO2 nanoflakes occurs, and the quenched emission is recovered with acetylcholinesterase-mediated reactions. This process allows for the determination of chlorpyrifos by inhibiting enzymatic activity. The UCNPs/MnO2 were embedded to fabricate a hydrogel portable kit, the blue-violet emission images captured by smartphone were converted into corresponding gray values by Python-assisted superiority chart algorithm which achieves a real-time rapid quantitative analysis of chlorpyrifos with a detection limit of 0.17 ng mL-1. At the same time, pseudo-color images were also added by Python in "one run" to distinguish images clearly. This sensor detection with Python-assisted analysis platform provides a new perspective on pesticide monitoring and broadens the application prospects in bioanalysis.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article