Your browser doesn't support javascript.
loading
Single-cell network analysis reveals gene expression programs for Arabidopsis root development and metabolism.
Han, Ershang; Geng, Zhenxing; Qin, Yue; Wang, Yuewei; Ma, Shisong.
Affiliation
  • Han E; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China.
  • Geng Z; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China.
  • Qin Y; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China.
  • Wang Y; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China.
  • Ma S; MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China; School of Data Science, University of Science and Technology
Plant Commun ; : 100978, 2024 May 22.
Article in En | MEDLINE | ID: mdl-38783601
ABSTRACT
Single-cell RNA-sequencing datasets of Arabidopsis roots have been generated, but related comprehensive gene co-expression network analyses are lacking. We conducted a single-cell gene co-expression network analysis with publicly available scRNA-seq datasets of Arabidopsis roots using a SingleCellGGM algorithm. The analysis identified 149 gene co-expression modules, which we considered to be gene expression programs (GEPs). By examining their spatiotemporal expression, we identified GEPs specifically expressed in major root cell types along their developmental trajectories. These GEPs define gene programs regulating root cell development at different stages and are enriched with relevant developmental regulators. As examples, a GEP specific for the quiescent center (QC) contains 20 genes regulating QC and stem cell niche homeostasis, and four GEPs are expressed in sieve elements (SEs) from early to late developmental stages, with the early-stage GEP containing 17 known SE developmental regulators. We also identified GEPs for metabolic pathways with cell-type-specific expression, suggesting the existence of cell-type-specific metabolism in roots. Using the GEPs, we discovered and verified a columella-specific gene, NRL27, as a regulator of the auxin-related root gravitropism response. Our analysis thus systematically reveals GEPs that regulate Arabidopsis root development and metabolism and provides ample resources for root biology studies.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Plant Commun Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Plant Commun Year: 2024 Document type: Article Affiliation country: China
...