Your browser doesn't support javascript.
loading
Preparation of hyperbranched hydrophobic nano-silica and its superior needling-effect in PDMS defoam agent.
Wang, Linan; Wang, Huanmin; Rong, Mingming; Li, Wei; Li, Ning; Liu, Peisong; Li, Xiaohong; Zhang, Zhijun.
Affiliation
  • Wang L; Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China.
  • Wang H; Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China.
  • Rong M; Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China.
  • Li W; Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China; Engineering Research Center for Nanomaterials Company Limited, Henan University, Jiyuan 459000, China.
  • Li N; Engineering Research Center for Nanomaterials Company Limited, Henan University, Jiyuan 459000, China.
  • Liu P; Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China; Engineering Research Center for Nanomaterials Company Limited, Henan University, Jiyuan 459000, China.
  • Li X; Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China; Engineering Research Center for Nanomaterials Company Limited, Henan University, Jiyuan 459000, China. Electronic address: xiaohongli@vip.henu.edu.cn.
  • Zhang Z; Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China; Engineering Research Center for Nanomaterials Company Limited, Henan University, Jiyuan 459000, China.
J Colloid Interface Sci ; 670: 698-708, 2024 Sep 15.
Article in En | MEDLINE | ID: mdl-38788437
ABSTRACT
Hydrophobic nano silica powder is a kind of important synergist to silicone defoaming agents. The large pore volume and branched chain conformation of silica nanoparticles present superior effects on defoaming properties. However, silica nanoparticles synthesized by liquid phase easily aggregate and pore collapse because of their high surface activity and polarity, leading to poorer dispersity and limited practicability. In this paper, a novel hydrophobic silica with a hyperbranched structure was designed through in-situ modifying method with hexamethyldisilazane (HMDS) and polydimethylsiloxane (PDMS) in the liquid phase. The trimethylsilanol generated by HMDS hydrolysis reacts quickly with the highly active hydroxyl groups on the silica, causing the surface properties of the nanoparticles to transform from polar to non-polar properties. The steric hindrance of the trimethyl silicon and the reduction of the surface polarity effectively prevent silica pores from collapsing and maintain the macropore structures to realize the hyperbranched silica. At the same time, the -Si (CH3)2- from PDMS endowed the hyperbranched silica with excellent hydrophobicity. When applied in the defoaming agent, the hydrophobicity of silica contributes to dewetting the foams, and the hyperbranched spatial structures play an enhanced needling effect. Therefore, this hydrophobic hyperbranched silica exhibited a surprising defoaming effect, which significantly reduced the defoaming time from 464.4 s to less than 2 s, superior to commercial defoaming silica (155.3 s). The defoaming efficiency reached 100 % within 2 s of the end of the shaking, and the defoamer antifoaming ability was improved to reach 27.5 min, which was 77 % higher than that of commercial defoamer.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article Affiliation country: China