Your browser doesn't support javascript.
loading
Effect of folA gene in human breast milk-derived Limosilactobacillus reuteri on its folate biosynthesis.
Jiang, Yu; Li, Xianping; Zhang, Wei; Ji, Yadong; Yang, Kai; Liu, Lu; Zhang, Minghui; Qiao, Weicang; Zhao, Junying; Du, Mengjing; Fan, Xiaofei; Dang, Xingfen; Chen, Huo; Jiang, Tiemin; Chen, Lijun.
Affiliation
  • Jiang Y; South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, China.
  • Li X; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Zhang W; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Ji Y; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Yang K; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Liu L; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Zhang M; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Qiao W; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Zhao J; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Du M; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Fan X; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Dang X; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Chen H; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Jiang T; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
  • Chen L; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co., Ltd., Beijing, China.
Front Microbiol ; 15: 1402654, 2024.
Article in En | MEDLINE | ID: mdl-38812695
ABSTRACT

Introduction:

Folate supplementation is crucial for the human body, and the chemically synthesized folic acid might have undesirable side effects. The use of molecular breeding methods to modify the genes related to the biosynthesis of folate by probiotics to increase folate production is currently a focus of research.

Methods:

In this study, the folate-producing strain of Limosilactobacillus reuteri B1-28 was isolated from human breast milk, and the difference between B1-28 and folA gene deletion strain ΔFolA was investigated by phenotyping, in vitro probiotic evaluation, metabolism and transcriptome analysis.

Results:

The results showed that the folate producted by the ΔFolA was 2-3 folds that of the B1-28. Scanning electron microscope showed that ΔFolA had rougher surface, and the acid-producing capacity (p = 0.0008) and adhesion properties (p = 0.0096) were significantly enhanced than B1-28. Transcriptomic analysis revealed that differentially expressed genes were mainly involved in three pathways, among which the biosynthesis of ribosome and aminoacyl-tRNA occurred in the key metabolic pathways. Metabolomics analysis showed that folA affected 5 metabolic pathways, involving 89 different metabolites.

Discussion:

In conclusion, the editing of a key gene of folA in folate biosynthesis pathway provides a feasible pathway to improve folate biosynthesis in breast milk-derived probiotics.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Front Microbiol / Front. microbiol / Frontiers in microbiology Year: 2024 Document type: Article Affiliation country: China Country of publication: Suiza

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Front Microbiol / Front. microbiol / Frontiers in microbiology Year: 2024 Document type: Article Affiliation country: China Country of publication: Suiza