Your browser doesn't support javascript.
loading
Berberine enhances the function of intestinal stem cells in healthy and radiation-injured mice.
Tu, Siyu; Huang, Yujun; Tian, Hefei; Xu, Lu; Wang, Xi; Huang, Lingxiao; Lei, Xudan; Xu, Zhenni; Liu, Dengqun.
Affiliation
  • Tu S; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cance
  • Huang Y; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cance
  • Tian H; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cance
  • Xu L; Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Ch
  • Wang X; Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Ch
  • Huang L; Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Ch
  • Lei X; Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Ch
  • Xu Z; Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Ch
  • Liu D; Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Ch
Int Immunopharmacol ; 136: 112278, 2024 Jul 30.
Article in En | MEDLINE | ID: mdl-38815353
ABSTRACT
Intestinal stem cells (ISCs) are pivotal for the maintenance and regeneration of the intestinal epithelium. Berberine (BBR) exhibits diverse biological activities, but it remains unclear whether BBR can modulate ISCs' function. Therefore, we investigated the effects of BBR on ISCs in healthy and radiation-injured mice and explored the potential underlying mechanisms involved. The results showed that BBR significantly increased the length of the small intestines, the height of the villi, and the depth and density of the crypts, promoted the proliferation of cryptal epithelial cells and increased the number of OLFM4+ ISCs and goblet cells. Crypts from the BBR-treated mice were more capable of growing into enteroids than those from untreated mice. BBR alleviated WAI-induced intestinal injury. BBR suppressed the apoptosis of crypt epithelial cells, increased the quantity of goblet cells, and increased the quantity of OLFM4+ ISCs and tdTomato+ progenies of ISCs after 8 Gy WAI-induced injury. Mechanistically, BBR treatment caused a significant increase in the quantity of p-S6, p-STAT3 and p-ERK1/2 positive cryptal epithelial cells under physiological conditions and after WAI-induced injury. In conclusion, BBR is capable of enhancing the function of ISCs either physiologically or after radiation-induced injury, indicating that BBR has potential value in the treatment of radiation-induced intestinal injury.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stem Cells / Berberine / Intestinal Mucosa / Mice, Inbred C57BL Limits: Animals Language: En Journal: Int Immunopharmacol Journal subject: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Stem Cells / Berberine / Intestinal Mucosa / Mice, Inbred C57BL Limits: Animals Language: En Journal: Int Immunopharmacol Journal subject: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Year: 2024 Document type: Article
...