Your browser doesn't support javascript.
loading
ABSTRACT
Intra-articular delivery of disease-modifying osteoarthritis drugs (DMOADs) is likely to be most effective in early post-traumatic osteoarthritis (PTOA) when symptoms are minimal and patients are physically active. DMOAD delivery systems therefore must withstand repeated mechanical loading without affecting the drug release kinetics. Although soft materials are preferred for DMOAD delivery, mechanical loading can compromise their structural integrity and disrupt drug release. Here, we report a mechanically resilient soft hydrogel that rapidly self-heals under conditions resembling human running while maintaining sustained release of the cathepsin-K inhibitor L-006235 used as a proof-of-concept DMOAD. Notably, this hydrogel outperformed a previously reported hydrogel designed for intra-articular drug delivery, used as a control in our study, which neither recovered nor maintained drug release under mechanical loading. Upon injection into mouse knee joints, the hydrogel showed consistent release kinetics of the encapsulated agent in both treadmill-running and non-running mice. In a mouse model of aggressive PTOA exacerbated by treadmill running, L-006235 hydrogel markedly reduced cartilage degeneration. To our knowledge, this is the first hydrogel proven to withstand human running conditions and enable sustained DMOAD delivery in physically active joints, and the first study demonstrating reduced disease progression in a severe PTOA model under rigorous physical activity, highlighting the hydrogel's potential for PTOA treatment in active patients.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioRxiv Year: 2024 Document type: Article Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: BioRxiv Year: 2024 Document type: Article Country of publication: Estados Unidos