Your browser doesn't support javascript.
loading
Efficient C(sp3)-H Bond Oxidation on Perovskite Quantum Dots Based on Ce-Oxygen Affinity.
Wang, Teng; Li, Yonglong; Yang, Xian; Hu, Yanfang; Du, Xiaomeng; Zhang, Maodi; Huang, Zhuanzhuan; Liu, Siyu; Wang, Ying; Xie, Wei.
Affiliation
  • Wang T; State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, W
  • Li Y; State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, W
  • Yang X; State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, W
  • Hu Y; State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, W
  • Du X; State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, W
  • Zhang M; State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, W
  • Huang Z; Ultrafast Electron Microscopy Laboratory, Key Laboratory of Weak-Light Nonlinear Photonics (Ministry of Education), School of Physics, Nankai University, Weijin Rd. 94, Tianjin, 300071, China.
  • Liu S; Ultrafast Electron Microscopy Laboratory, Key Laboratory of Weak-Light Nonlinear Photonics (Ministry of Education), School of Physics, Nankai University, Weijin Rd. 94, Tianjin, 300071, China.
  • Wang Y; State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, W
  • Xie W; State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, W
Angew Chem Int Ed Engl ; : e202409656, 2024 Jun 04.
Article in En | MEDLINE | ID: mdl-38837290
ABSTRACT
Perovskite quantum dots (QDs) have shown attractive prospects in the field of visible photocatalysis, especially in the synthesis of high value-added chemicals. However, under aerobic conditions, the stable operation of QD catalysts has been limited by the reactive oxygen species (ROS) generated by photoexcitation, especially superoxide species O2⋅-. Here, we propose a strategy of Ce3+ doping in perovskite QDs to guide superoxide species for photocatalytic oxidation reactions. In C(sp3)-H bond oxidation of hydrocarbons, superoxide species were rapidly generated and efficiently utilized on the surface of perovskite QDs, which achieves the stable operation of the catalytic system and obtains a high product conversion rate (15.3 mmol/g/h for benzaldehydes). The mechanism studies show that the strong Ce-oxygen affinity accelerates the relaxation process of photoinduced exciton transfer to superoxide species and inhibits the radiative recombination pathway. This work provides a new idea of utilizing oxygen species on perovskite surface and broadens the design strategy of high-performance QD photocatalysts.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2024 Document type: Article