Your browser doesn't support javascript.
loading
Integrated platform for multiscale molecular imaging and phenotyping of the human brain.
Park, Juhyuk; Wang, Ji; Guan, Webster; Gjesteby, Lars A; Pollack, Dylan; Kamentsky, Lee; Evans, Nicholas B; Stirman, Jeff; Gu, Xinyi; Zhao, Chuanxi; Marx, Slayton; Kim, Minyoung E; Choi, Seo Woo; Snyder, Michael; Chavez, David; Su-Arcaro, Clover; Tian, Yuxuan; Park, Chang Sin; Zhang, Qiangge; Yun, Dae Hee; Moukheiber, Mira; Feng, Guoping; Yang, X William; Keene, C Dirk; Hof, Patrick R; Ghosh, Satrajit S; Frosch, Matthew P; Brattain, Laura J; Chung, Kwanghun.
Affiliation
  • Park J; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
  • Wang J; Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA.
  • Guan W; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA.
  • Gjesteby LA; Center for Nanomedicine, Institute for Basic Science, Seoul 03722, Republic of Korea.
  • Pollack D; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
  • Kamentsky L; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA.
  • Evans NB; Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA.
  • Stirman J; MIT Lincoln Laboratory, Lexington, MA 02421, USA.
  • Gu X; MIT Lincoln Laboratory, Lexington, MA 02421, USA.
  • Zhao C; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
  • Marx S; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA.
  • Kim ME; Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
  • Choi SW; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA.
  • Snyder M; LifeCanvas Technologies, Cambridge, MA 02141, USA.
  • Chavez D; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA.
  • Su-Arcaro C; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA.
  • Tian Y; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA.
  • Park CS; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
  • Zhang Q; Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA.
  • Yun DH; MIT Lincoln Laboratory, Lexington, MA 02421, USA.
  • Moukheiber M; MIT Lincoln Laboratory, Lexington, MA 02421, USA.
  • Feng G; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA.
  • Yang XW; Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA.
  • Keene CD; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
  • Hof PR; Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience, University of California, Los Angeles, CA 90024, USA.
  • Ghosh SS; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA.
  • Frosch MP; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
  • Brattain LJ; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA.
  • Chung K; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
Science ; 384(6701): eadh9979, 2024 Jun 14.
Article in En | MEDLINE | ID: mdl-38870291
ABSTRACT
Understanding cellular architectures and their connectivity is essential for interrogating system function and dysfunction. However, we lack technologies for mapping the multiscale details of individual cells and their connectivity in the human organ-scale system. We developed a platform that simultaneously extracts spatial, molecular, morphological, and connectivity information of individual cells from the same human brain. The platform includes three core elements a vibrating microtome for ultraprecision slicing of large-scale tissues without losing cellular connectivity (MEGAtome), a polymer hydrogel-based tissue processing technology for multiplexed multiscale imaging of human organ-scale tissues (mELAST), and a computational pipeline for reconstructing three-dimensional connectivity across multiple brain slabs (UNSLICE). We applied this platform for analyzing human Alzheimer's disease pathology at multiple scales and demonstrating scalable neural connectivity mapping in the human brain.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain / Molecular Imaging / Alzheimer Disease Limits: Humans Language: En Journal: Sci. (N.Y., N.Y.) / Science Year: 2024 Document type: Article Affiliation country: Estados Unidos Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain / Molecular Imaging / Alzheimer Disease Limits: Humans Language: En Journal: Sci. (N.Y., N.Y.) / Science Year: 2024 Document type: Article Affiliation country: Estados Unidos Country of publication: Estados Unidos