Your browser doesn't support javascript.
loading
Development of a Whole-Cell System Based on the Use of Genetically Modified Protoplasts to Detect Nickel Ions in Food Matrices.
De Caroli, Monica; Perrotta, Carla; Rampino, Patrizia.
Affiliation
  • De Caroli M; Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni 165, 73100 Lecce, Italy.
  • Perrotta C; NBFC National Biodiversity Future Center, 90133 Palermo, Italy.
  • Rampino P; Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni 165, 73100 Lecce, Italy.
Int J Mol Sci ; 25(11)2024 May 31.
Article in En | MEDLINE | ID: mdl-38892274
ABSTRACT
Heavy metals are dangerous contaminants that constitute a threat to human health because they persist in soils and are easily transferred into the food chain, causing damage to human health. Among heavy metals, nickel appears to be one of the most dangerous, being responsible for different disorders. Public health protection requires nickel detection in the environment and food chains. Biosensors represent simple, rapid, and sensitive methods for detecting nickel contamination. In this paper, we report on the setting up a whole-cell-based system, in which protoplasts, obtained from Nicotiana tabacum leaves, were used as transducers to detect the presence of heavy metal ions and, in particular, nickel ions. Protoplasts were genetically modified with a plasmid containing the Green Fluorescent Protein reporter gene (GFP) under control of the promoter region of a sunflower gene coding for a small Heat Shock Protein (HSP). Using this device, the presence of heavy metal ions was detected. Thus, the possibility of using this whole-cell system as a novel tool to detect the presence of nickel ions in food matrices was assessed.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Protoplasts / Nicotiana / Biosensing Techniques / Nickel Language: En Journal: Int J Mol Sci Year: 2024 Document type: Article Affiliation country: Italia

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Protoplasts / Nicotiana / Biosensing Techniques / Nickel Language: En Journal: Int J Mol Sci Year: 2024 Document type: Article Affiliation country: Italia