Your browser doesn't support javascript.
loading
Epigenetic Regulation of DLK1-DIO3 Region in Thyroid Carcinoma.
Alves, Letícia F; da Silva, Isabelle N; de Mello, Diego C; Fuziwara, Cesar S; Guil, Sonia; Esteller, Manel; Geraldo, Murilo V.
Affiliation
  • Alves LF; Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain.
  • da Silva IN; Department of Structural and Functional Biology, University of Campinas (UNICAMP), Sao Paulo 13083-863, Brazil.
  • de Mello DC; Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
  • Fuziwara CS; Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
  • Guil S; Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain.
  • Esteller M; Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain.
  • Geraldo MV; Department of Structural and Functional Biology, University of Campinas (UNICAMP), Sao Paulo 13083-863, Brazil.
Cells ; 13(12)2024 Jun 08.
Article in En | MEDLINE | ID: mdl-38920632
ABSTRACT
Non-coding RNAs (ncRNAs) have emerged as pivotal regulators in cellular biology, dispelling their former perception as 'junk transcripts'. Notably, the DLK1-DIO3 region harbors numerous ncRNAs, including long non-coding RNAs (lncRNAs) and over 50 microRNA genes. While papillary thyroid cancer showcases a pervasive decrease in DLK1-DIO3-derived ncRNA expression, the precise mechanisms driving this alteration remain elusive. We hypothesized that epigenetic alterations underlie shifts in ncRNA expression during thyroid cancer initiation and progression. This study aimed to elucidate the epigenetic mechanisms governing DLK1-DIO3 region expression in this malignancy. We have combined the analysis of DNA methylation by bisulfite sequencing together with that of histone modifications through ChIP-qPCR to gain insights into the epigenetic contribution to thyroid cancer in cell lines representing malignancies with different genetic backgrounds. Our findings characterize the region's epigenetic signature in thyroid cancer, uncovering distinctive DNA methylation patterns, particularly within CpG islands on the lncRNA MEG3-DMR, which potentially account for its downregulation in tumors. Pharmacological intervention targeting DNA methylation combined with histone deacetylation restored ncRNA expression. These results contribute to the understanding of the epigenetic mechanisms controlling the DLK1-DIO3 region in thyroid cancer, highlighting the combined role of DNA methylation and histone marks in regulating the locus' expression.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Calcium-Binding Proteins / Thyroid Neoplasms / Gene Expression Regulation, Neoplastic / DNA Methylation / Epigenesis, Genetic / RNA, Long Noncoding / Iodide Peroxidase Limits: Humans Language: En Journal: Cells Year: 2024 Document type: Article Affiliation country: España

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Calcium-Binding Proteins / Thyroid Neoplasms / Gene Expression Regulation, Neoplastic / DNA Methylation / Epigenesis, Genetic / RNA, Long Noncoding / Iodide Peroxidase Limits: Humans Language: En Journal: Cells Year: 2024 Document type: Article Affiliation country: España