Your browser doesn't support javascript.
loading
Three-Dimensional Bioprinted Skin Microrelief and Its Role in Skin Aging.
Sun, Wenxuan; Wang, Bo; Yang, Tianhao; Yin, Ruixue; Wang, Feifei; Zhang, Hongbo; Zhang, Wenjun.
Affiliation
  • Sun W; School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
  • Wang B; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650033, China.
  • Yang T; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China.
  • Yin R; School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
  • Wang F; School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
  • Zhang H; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650033, China.
  • Zhang W; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China.
Biomimetics (Basel) ; 9(6)2024 Jun 17.
Article in En | MEDLINE | ID: mdl-38921246
ABSTRACT
Skin aging is a complex physiological process, in which cells and the extracellular matrix (ECM) interreact, which leads to a change in the mechanical properties of skin, which in turn affects the cell secretion and ECM deposition. The natural skin microrelief that exists from birth has rarely been taken into account when evaluating skin aging, apart from the common knowledge that microreliefs might serve as the starting point or initialize micro-wrinkles. In fact, microrelief itself also changes with aging. Does the microrelief have other, better uses? In this paper, owing to the fast-developing 3D printing technology, skin wrinkles with microrelief of different age groups were successfully manufactured using the Digital light processing (DLP) technology. The mechanical properties of skin samples with and without microrelief were tested. It was found that microrelief has a big impact on the elastic modulus of skin samples. In order to explore the role of microrelief in skin aging, the wrinkle formation was numerically analyzed. The microrelief models of different age groups were created using the modified Voronoi algorithm for the first time, which offers fast and flexible mesh formation. We found that skin microrelief plays an important role in regulating the modulus of the epidermis, which is the dominant factor in wrinkle formation. The wrinkle length and depth were also analyzed numerically for the first time, owing to the additional dimension offered by microrelief. The results showed that wrinkles are mainly caused by the modulus change of the epidermis in the aging process, and compared with the dermis, the hypodermis is irrelevant to wrinkling. Hereby, we developed a hypothesis that microrelief makes the skin adaptive to the mechanical property changes from aging by adjusting its shape and size. The native-like skin samples with microrelief might shed a light on the mechanism of wrinkling and also help with understanding the complex physiological processes associated with human skin.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biomimetics (Basel) Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biomimetics (Basel) Year: 2024 Document type: Article Affiliation country: China