Your browser doesn't support javascript.
loading
Evaluating Fluorinated-Aniline Units with Functionalized Spiro[Fluorene-9,9'-Xanthene] as Hole-Transporting Materials in Perovskite Solar Cells and Light-Emitting Diodes.
Liu, Kuo; Sun, Liang; Liu, Qing-Lin; Ren, Bao-Yi; Guo, Run-Da; Wang, Lei; Sun, Ya-Guang; Wang, You-Sheng.
Affiliation
  • Liu K; Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China.
  • Sun L; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Liu QL; Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China.
  • Ren BY; Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China.
  • Guo RD; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Wang L; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Sun YG; Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China.
  • Wang YS; Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
Nanomaterials (Basel) ; 14(12)2024 Jun 18.
Article in En | MEDLINE | ID: mdl-38921920
ABSTRACT
In the field of perovskite optoelectronics, developing hole-transporting materials (HTMs) on the spiro[fluorene-9,9'-xanthene] (SFX) platform is one of the current research focuses. The SFX inherits the merits of spirobifluorene in terms of the configuration and property, but it is more easily derivatized and regulated by virtue of its binary structure. In this work, we design and synthesize four isomeric SFX-based HTMs, namely m-SFX-mF, p-SFX-mF, m-SFX-oF, and p-SFX-oF, through varying the positions of fluorination on the peripheral aniline units and their substitutions on the SFX core, and the optoelectronic performance of the resulting HTMs is evaluated in both perovskite solar cells (PSCs) and light-emitting diodes (PeLEDs) by the vacuum thermal evaporating hole-transporting layers (HTLs). The HTM p-SFX-oF exhibits an improved power conversion efficiency of 15.21% in an inverted PSC using CH3NH3PbI3 as an absorber, benefiting from the deep HOMO level and good HTL/perovskite interface contact. Meanwhile, the HTM m-SFX-mF provides a maximum external quantum efficiency of 3.15% in CsPb(Br/Cl)3-based PeLEDs, which is attributed to its perched HOMO level and shrunken band-gap for facilitating charge carrier injection and then exciton combination. Through elucidating the synergistic position effect of fluorination on aniline units and their substitutions on the SFX core, this work lays the foundation for developing low-cost and efficient HTMs in the future.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomaterials (Basel) Year: 2024 Document type: Article Affiliation country: China Country of publication: Suiza

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nanomaterials (Basel) Year: 2024 Document type: Article Affiliation country: China Country of publication: Suiza