Your browser doesn't support javascript.
loading
Tunable and Non-Invasive Printing of Transmissive Interference Colors with 2D Material Inks.
Liu, Jiarong; Huang, Ziyang; Xu, Youan; Liu, Peng; Wu, Keyou; Hao, Yugan; Zhang, Yunhao; Zhang, Zhiyuan; Zhang, Zehao; Ding, Baofu; Li, Bing; Liu, Bilu.
Affiliation
  • Liu J; Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Huang Z; Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Xu Y; Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Liu P; Xi'an Research Institute of High Technology, Xi'an Research Institute of High Technology, Xi'an, 710025, P. R. China.
  • Wu K; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.
  • Hao Y; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, P. R. China.
  • Zhang Y; Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Zhang Z; Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Zhang Z; Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Ding B; Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Li B; Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
  • Liu B; Shenzhen Geim Graphene Center, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
Small ; : e2402116, 2024 Jun 26.
Article in En | MEDLINE | ID: mdl-38923774
ABSTRACT
Interference colors hold significant importance in optics and arts. Current methods for printing interference colors entail complex procedures and large-scale printing systems for the scarcity of inks that exhibit both sensitivity and tunability to external fields. The production of highly transparent inks capable of rendering transmissive colors has presented ongoing challenges. Here, a type of paramagnetic ink based on 2D materials that exhibit polychrome in one magnetic field is invented. By precisely manipulating the doping ratio of magnetic elements within titanate nanosheets, the magneto-optical sensitivity named Cotton-Mouton coefficient is engineerable from 728 to a record high value of 3272 m-1 T-2, with negligible influence on its intrinsic wide optical bandgap. Combined with the sensitive and controllable magneto-responsiveness of the ink, modulate and non-invasively print transmissive interference colors using small permanent magnets are precised. This work paves the way for preparing transmissive interference colors in an energy-saving and damage-free manner, which can expand its use in widespread areas.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article