Your browser doesn't support javascript.
loading
High-contrast multi-surface imaging of latent fingerprints using color-tunable YOF:Tb3+,Eu3+ ultrafine nanophosphors with high quantum yield.
Tamboli, Sumedha; Nair, Govind B; Kroon, Robin E; Erasmus, Lucas J B; Swart, Hendrik C.
Affiliation
  • Tamboli S; Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa. govind1291@yahoo.com.
  • Nair GB; Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa. govind1291@yahoo.com.
  • Kroon RE; Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa. govind1291@yahoo.com.
  • Erasmus LJB; Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa. govind1291@yahoo.com.
  • Swart HC; Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa. govind1291@yahoo.com.
Dalton Trans ; 53(28): 11736-11749, 2024 Jul 16.
Article in En | MEDLINE | ID: mdl-38932632
ABSTRACT
Visualization of latent fingerprints (LFPs) using conventional powders has faced challenges on multicolor surfaces. However, these challenges are addressed by the advent of fluorescent powders in LFP detection, and they have redefined the effectiveness of the powder dusting method. In this study, color-tunable YOFTb3+,Eu3+ nanophosphors were examined for LFP recognition and were evaluated for their practicality on different types of surfaces. Under 254 nm UV irradiation, the LFPs developed using these nanophosphors showed clear and distinct ridge patterns with level 1, 2, and 3 details. The ultrafine particles of these nanophosphors adhered to the ridge patterns and replicated the minutiae of the LFPs. Meanwhile, the variation of the Tb3+/Eu3+ ratio demonstrated multicolor fluorescence emission from the nanophosphors, which provided better contrast between the ridge patterns on complex surfaces. Furthermore, the high luminescence quantum yield of the nanophosphors ensured high-resolution fluorescence images of the LFPs with a well-defined pattern that was recognizable even without any microscope or sophisticated instrumentation.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Dalton Trans Journal subject: QUIMICA Year: 2024 Document type: Article Affiliation country: Sudáfrica

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Dalton Trans Journal subject: QUIMICA Year: 2024 Document type: Article Affiliation country: Sudáfrica