Your browser doesn't support javascript.
loading
Cathepsin L induces cellular senescence by upregulating CUX1 and p16INK4a.
Wu, Yuwei; Jiang, Danli; Liu, Qing; Yan, Shaoyang; Liu, Xiuzhen; Wu, Ting; Sun, Wei; Li, Gang.
Affiliation
  • Wu Y; Department of Cardiology, Third Xiangya Hospital, Central South University, Changsha, China.
  • Jiang D; Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA.
  • Liu Q; Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA.
  • Yan S; International Center for Aging and Cancer Hainan Medical University, Hainan, China.
  • Liu X; Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA.
  • Wu T; Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA.
  • Sun W; Tsinghua Medicine, Tsinghua University, Peking, China.
  • Li G; Aging Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Aging (Albany NY) ; 16(13): 10749-10764, 2024 Jun 18.
Article in En | MEDLINE | ID: mdl-38944813
ABSTRACT
Cathepsin L (CTSL) has been implicated in aging and age-related diseases, such as cardiovascular diseases, specifically atherosclerosis. However, the underlying mechanism(s) is not well documented. Recently, we demonstrated a role of CUT-like homeobox 1 (CUX1) in regulating the p16INK4a-dependent cellular senescence in human endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) via its binding to an atherosclerosis-associated functional SNP (fSNP) rs1537371 on the CDKN2A/B locus. In this study, to determine if CTSL, which was reported to proteolytically activate CUX1, regulates cellular senescence via CUX1, we measured the expression of CTSL, together with CUX1 and p16INK4a, in human ECs and VSMCs undergoing senescence. We discovered that CUX1 is not a substrate that is cleaved by CTSL. Instead, CTSL is an upstream regulator that activates CUX1 transcription indirectly in a process that requires the proteolytic activity of CTSL. Our findings suggest that there is a transcription factor in between CTSL and CUX1, and cleavage of this factor by CTSL can activate CUX1 transcription, inducing endothelial senescence. Thus, our findings provide new insights into the signal transduction pathway that leads to atherosclerosis-associated cellular senescence.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Repressor Proteins / Cellular Senescence / Homeodomain Proteins / Cyclin-Dependent Kinase Inhibitor p16 / Cathepsin L / Muscle, Smooth, Vascular Limits: Humans Language: En Journal: Aging (Albany NY) Journal subject: GERIATRIA Year: 2024 Document type: Article Affiliation country: China Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Repressor Proteins / Cellular Senescence / Homeodomain Proteins / Cyclin-Dependent Kinase Inhibitor p16 / Cathepsin L / Muscle, Smooth, Vascular Limits: Humans Language: En Journal: Aging (Albany NY) Journal subject: GERIATRIA Year: 2024 Document type: Article Affiliation country: China Country of publication: Estados Unidos