Your browser doesn't support javascript.
loading
Comparative analysis of Krüppel-like factors expression in the retinas of zebrafish and mice during development and after injury.
Ávila-Mendoza, José; Urban-Sosa, Valeria A; Lazcano, Iván; Orozco, Aurea; Luna, Maricela; Martínez-Moreno, Carlos G; Arámburo, Carlos.
Affiliation
  • Ávila-Mendoza J; Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address: javila@comunidad.unam.mx.
  • Urban-Sosa VA; Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
  • Lazcano I; Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
  • Orozco A; Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
  • Luna M; Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
  • Martínez-Moreno CG; Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
  • Arámburo C; Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address: aramburo@unam.mx.
Gen Comp Endocrinol ; 356: 114579, 2024 Sep 15.
Article in En | MEDLINE | ID: mdl-38964422
ABSTRACT
The Krüppel-like factors (KLFs) have emerged as important transcriptional regulators of various cellular processes, including neural development. Some of them have been described as intrinsic factors involved in axon regeneration in the central nervous system (CNS) of vertebrates. Zebrafish are known for their ability to regenerate several tissues in adulthood, including the CNS, a capability lost during vertebrate evolution and absent in adult mammals. The role that KLFs could play in this differential ability remains unknown. Therefore, in this study, we analyzed the endogenous response of certain KLFs implicated in axon regeneration (KLFs 6, 7, 9, and 13) during retina development and after axon injury. The results showed that the expression of Klfs 6, 7, and 13 decreases in the developing retina of mice but not in zebrafish, while the mRNA levels of Klf9 strongly increase in both species. The response to injury was further analyzed using optic nerve crush (ONC) as a model of lesion. Our analysis during the acute phase (hours) demonstrated an induction of Klfs 6 and 7 expression exclusively in the zebrafish retina, while Klfs 9 and 13 mRNA levels increased in both species. Further analysis of the chronic response (days) showed that mRNA levels of Klf6 transiently increase in the retinas of both zebrafish and mice, whereas those of Klf7 decrease later after optic nerve injury. In addition, the analysis revealed that the expression of Klf9 decreases, while that of Klf13 increases in the retinas of zebrafish in response to optic nerve injury but remains unaltered in mice. Altogether, these findings support the hypothesis that KLFs may play a role in the differential axon regeneration abilities exhibited by fish and mice.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Retina / Zebrafish / Kruppel-Like Transcription Factors Limits: Animals Language: En Journal: Gen Comp Endocrinol Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Retina / Zebrafish / Kruppel-Like Transcription Factors Limits: Animals Language: En Journal: Gen Comp Endocrinol Year: 2024 Document type: Article