Your browser doesn't support javascript.
loading
ESL attenuates BLM-induced IPF in mice: Dual mediation of the TLR4/NF-κB and TGF-ß1/PI3K/Akt/FOXO3a pathways.
Jia, Canchao; Yang, Minjuan; Xiao, Guanlin; Zeng, Zhihao; Li, Lingjie; Li, Yangxue; Jiang, Jieyi; Xu, Aili; Qiu, Jinyan; Tang, Ruiyin; Li, Dongmei; Jia, Dezheng; Xie, Canhui; Wu, Guangying; Cai, Dake; Bi, Xiaoli.
Affiliation
  • Jia C; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095.
  • Yang M; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095.
  • Xiao G; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095,; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095.
  • Zeng Z; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095.
  • Li L; Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China.
  • Li Y; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095,; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095.
  • Jiang J; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095,; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095.
  • Xu A; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095,; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095.
  • Qiu J; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405.
  • Tang R; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405.
  • Li D; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095.
  • Jia D; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095.
  • Xie C; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095.
  • Wu G; The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405,; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095.
  • Cai D; Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China. Electronic address: caidake@foxmail.com.
  • Bi X; Guangdong Provincial Second Hospital of Traditional Chinese Medicine (Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou 510095,; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou 510095,
Phytomedicine ; 132: 155545, 2024 Sep.
Article in En | MEDLINE | ID: mdl-38972238
ABSTRACT
BACKGROUNDS Idiopathic pulmonary fibrosis (IPF) is a persistent and advanced pulmonary ailment. The roles of innate immunity and adaptive immunity are pivotal in the evolution of IPF. An ill-adjusted interaction between epithelial cells and immune cells is responsible for initiating the epithelial-mesenchymal transition (EMT) process and sustaining chronic inflammation, thereby fostering fibrosis progression. The intricacy of IPF pathogenesis has hindered the availability of efficacious agents. Elephantopus scaber Linn. (ESL) is a canonical Chinese medicine with significant immunoregulatory effects, and its aqueous extract has been proven to attenuate IPF symptoms in bleomycin (BLM)-induced mice. However, the underlying mechanism through which ESL relieves IPF remains unclear.

AIM:

To validate whether ESL reverses IPF by mediating the immune response and EMT.

METHODS:

Ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) and UPLC were used to identify the components and determine the concentrations of the specific compounds in the ESL. Network pharmacology and molecular docking were applied to predict the potential mechanism underlying the anti-IPF effect of ESL. BLM-induced IPF mice were used to validate the anti-IPF effect of ESL, and lung tissue was collected to test putative pathways involved in inflammation and EMT via immunohistochemistry (ICH), real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting.

RESULTS:

Sixty-one compounds were identified, and thirteen main ingredients were quantified in the ESL. In silico experiments predicted that the IPF-mediated reversal of adverse effects by ESL would be related to interruption of the Toll-like receptor 4 (TLR4)/nuclear factor-k-gene binding (NF-ĸB) inflammatory pathway and the transforming growth factor-beta l (TGF-ß1)/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/forkhead box O3 (FOXO3a) fibrosis pathway. In vivo experiments showed that ESL alleviates BLM-induced lung inflammation and fibrosis by reducing neutrophil aggregation and fibroblast foci, similar to the effects of the positive control drug pirfenidone (PFD). ESL markedly inhibited the transcription of TNF-α, IL-1ß, and IL-6, which are downstream genes of the NF-κB signaling pathway. Furthermore, the protein levels of TLR4 and p-NF-κB were correspondingly inhibited in response to ESL treatment. Additionally, ESL reverses BLM-induced changes in the expression of EMT-related biological characteristic indicators (collagen I [COLIA1], E-cadherin, and alpha smooth muscle actin [α-SMA]) at the messenger ribonucleic acid (mRNA) level and markedly inhibits the expression of EMT-related upstream proteins (TGF-ß1, p-PI3K, p-Akt, and p-FOXO3a).

CONCLUSION:

Our research suggested that ESL attenuates BLM-induced IPF through mediating the EMT process via the TGF-ß1/PI3K/Akt/FOXO3a signaling pathway and inhibiting inflammation through the TLR4/NF-κB signaling pathway, highlighting that ESL can serve as an immunoregulator for relieving the abnormal immune response and reversing the EMT in IPF.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bleomycin / Signal Transduction / NF-kappa B / Phosphatidylinositol 3-Kinases / Proto-Oncogene Proteins c-akt / Toll-Like Receptor 4 / Transforming Growth Factor beta1 / Idiopathic Pulmonary Fibrosis / Epithelial-Mesenchymal Transition / Forkhead Box Protein O3 Limits: Animals Language: En Journal: Phytomedicine Journal subject: TERAPIAS COMPLEMENTARES Year: 2024 Document type: Article Country of publication: Alemania

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bleomycin / Signal Transduction / NF-kappa B / Phosphatidylinositol 3-Kinases / Proto-Oncogene Proteins c-akt / Toll-Like Receptor 4 / Transforming Growth Factor beta1 / Idiopathic Pulmonary Fibrosis / Epithelial-Mesenchymal Transition / Forkhead Box Protein O3 Limits: Animals Language: En Journal: Phytomedicine Journal subject: TERAPIAS COMPLEMENTARES Year: 2024 Document type: Article Country of publication: Alemania