Your browser doesn't support javascript.
loading
Inhibiting dissolution strategy achieving high-performance sodium titanium phosphate hybrid anode in seawater-based dual-ion battery.
Gou, Siying; Zhang, Xueying; Xu, Yuanhu; Tang, Jiahao; Ji, Yingying; Imranc, Muhammad; Pan, Likun; Li, Jinliang; Liu, Bo-Tian.
Affiliation
  • Gou S; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
  • Zhang X; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
  • Xu Y; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
  • Tang J; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
  • Ji Y; Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, Jinan University, Guangzhou 510632, China.
  • Imranc M; Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia.
  • Pan L; Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China. Electronic address: lkpan@phy.ecnu.edu.cn.
  • Li J; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China; Siyuan Laboratory, Guangdong Provincial En
  • Liu BT; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China. Electronic address: btliu2018@glut.edu.cn.
J Colloid Interface Sci ; 675: 429-437, 2024 Jul 04.
Article in En | MEDLINE | ID: mdl-38981252
ABSTRACT
Aqueous sodium-ion batteries (ASIBs) show great promise as candidates for large-scale energy storage. However, the potential of ASIB is impeded by the limited availability of suitable anode types and the occurrence of dissolution side reactions linked to hydrogen evolution. In this study, we addressed these challenges by developing a Bi-coating modified anode based on a sodium titanium phosphate (NTP)-carbon fibers (CFs) hybrid electrode (NTP-CFs/Bi). The Bi-coating effectively mitigates the localized enrichment of hydroxyl anion (OH-) near the NTP surface, thus addressing the dissolution issue. Notably, the Bi-coating not only restricts the local abundance of OH- to inhibit dissolution but also ensures a higher capacity compared with other NTP-based anodes. Consequently, the NTP-CFs/Bi anode demonstrates an impressive specific capacity of 216.8 mAh/g at 0.2 mV/s and maintains a 90.7 % capacity retention after 1000 cycles at 6.3 A/g. This achievement sets a new capacity record among NTP-based anodes for sodium storage. Furthermore, when paired with a cathode composed of hydroxy nickel oxide directly grown on Ni foam, we assembled a seawater-based cell exhibiting high energy and power densities, surpassing the most recently reported ASIBs. This groundbreaking work lays the foundation for a potential method to develop long-life NTP-based anodes.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2024 Document type: Article Affiliation country: China
...