Your browser doesn't support javascript.
loading
Antibiotics suppress the expression of antimicrobial peptides and increase sensitivity of Cydia pomonella to granulosis virus.
Li, Zaiyuan; Ouyang, Lan; Lu, Yin; Peng, Qi; Qiao, Xi; Wu, Qiang; Zhang, Bin; Liu, Bo; Wan, Fanghao; Qian, Wanqiang.
Affiliation
  • Li Z; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China. Electronic address: zaiyuanli01@163.com.
  • Ouyang L; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Q
  • Lu Y; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; School of Life Sciences, Henan University
  • Peng Q; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Q
  • Qiao X; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China. Electronic address: qiaoxi@caas.cn.
  • Wu Q; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China. Electronic address: wuqiang@caas.cn.
  • Zhang B; College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, China. Electronic address: binzhang@qau.edu.cn.
  • Liu B; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Q
  • Wan F; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China; College of Plant Health & Medicine, Q
  • Qian W; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China. Electronic address: qianwanqiang@caas.cn.
Sci Total Environ ; 947: 174612, 2024 Oct 15.
Article in En | MEDLINE | ID: mdl-38992382
ABSTRACT
Cydia pomonella granulovirus (CpGV) is a highly specific and environmentally friendly pathogenic virus successfully used as a biological insecticide against codling moth larvae. Continuous application of CpGV has led to high levels of resistance in codling moth, Cydia pomonella (C. pomonella). Nevertheless, the specific molecular mechanisms underlying the development of resistance in codling moths to CpGV have been rarely investigated. This study explored the potential antiviral immune roles of codling moth antimicrobial peptides (AMPs) against CpGV. A total of 11 AMP genes classified in cecropin, defensin, gloverin, and attacin subfamilies, were identified in the codling moth genome. The cecropin and gloverin subfamilies were found to be the ancestral genes of the AMP gene family. The expression of two AMP genes (CmGlo1 and CmAtt1) significantly increased following CpGV challenge, and CmGlo1 and CmAtt1 gene silencing resulted in a significant increase in CpGV replication in codling moth larvae. The hemolymph and fat body serve as major viral immune functional tissues in codling moth larvae. Moreover, zhongshengmycin significantly reduced the diversity and abundance of codling moth larvae gut microbiota, thereby suppressing the expression of CmAtt1 AMP gene. We also found that the combination of the virus with zhongshengmycin would enhance the insecticidal effects of CpGV. This study provides the first explanation of the molecular mechanisms driving CpGV immune function development in codling moths, approached from the perspective of the codling moth itself. Additionally, we introduced an alternative approach to combat codling moth in the field by combining antibiotics with biopesticides to amplify the insecticidal effects of the latter.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Granulovirus / Antimicrobial Peptides / Larva / Anti-Bacterial Agents / Moths Limits: Animals Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Granulovirus / Antimicrobial Peptides / Larva / Anti-Bacterial Agents / Moths Limits: Animals Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: Países Bajos