Your browser doesn't support javascript.
loading
Bone Fracture Healing under the Intervention of a Stretchable Ultrasound Array.
Liu, Hang; Ding, Shuchen; Lin, Xinyi; Wang, Suhao; Wang, Yue; Feng, Zhiyun; Song, Jizhou.
Affiliation
  • Liu H; Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
  • Ding S; Center of Orthopedics, The 903rd Hospital of People's Liberation Army, Hangzhou Zhejiang 310003, China.
  • Lin X; Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
  • Wang S; Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
  • Wang Y; Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
  • Feng Z; Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
  • Song J; Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
ACS Nano ; 2024 Jul 15.
Article in En | MEDLINE | ID: mdl-39008625
ABSTRACT
Ultrasound treatment has been recognized as an effective and noninvasive approach to promote fracture healing. However, traditional rigid ultrasound probe is bulky, requiring cumbersome manual operations and inducing unfavorable side effects when functioning, which precludes the wide application of ultrasound in bone fracture healing. Here, we report a stretchable ultrasound array for bone fracture healing, which features high-performance 1-3 piezoelectric composites as transducers, stretchable multilayered serpentine metal films in a bridge-island pattern as electrical interconnects, soft elastomeric membranes as encapsulations, and polydimethylsiloxane (PDMS) with low curing agent ratio as adhesive layers. The resulting ultrasound array offers the benefits of large stretchability for easy skin integration and effective affecting region for simple skin alignment with good electromechanical performance. Experimental investigations of the stretchable ultrasound array on the delayed union model in femoral shafts of rats show that the callus growth is more active in the second week of treatment and the fracture site is completely osseous healed in the sixth week of treatment. Various bone quality indicators (e.g., bone modulus, bone mineral density, bone tissue/total tissue volume, and trabecular bone thickness) could be enhanced with the intervention of a stretchable ultrasound array. Histological and immunohistochemical examinations indicate that ultrasound promotes osteoblast differentiation, bone formation, and remodeling by promoting the expression of osteopontin (OPN) and runt-related transcription factor 2 (RUNX2). This work provides an effective tool for bone fracture healing in a simple and convenient manner and creates engineering opportunities for applying ultrasound in medical applications.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Nano Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Nano Year: 2024 Document type: Article Affiliation country: China