Your browser doesn't support javascript.
loading
Machine learning-based estimation of land surface temperature variability over a large region: a temporally consistent approach using single-day satellite imagery.
Rengma, Nyenshu Seb; Yadav, Manohar.
Affiliation
  • Rengma NS; Geographic Information System (GIS) Cell, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
  • Yadav M; Geographic Information System (GIS) Cell, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India. ssmyadav@mnnit.ac.in.
Environ Monit Assess ; 196(8): 738, 2024 Jul 16.
Article in En | MEDLINE | ID: mdl-39009752
ABSTRACT
Accurate retrieval of LST is crucial for understanding and mitigating the effects of urban heat islands, and ultimately addressing the broader challenge of global warming. This study emphasizes the importance of a single day satellite imageries for large-scale LST retrieval. It explores the impact of Spectral indices of the surface parameters, using machine learning algorithms to enhance accuracy. The research proposes a novel approach of capturing satellite data on a single day to reduce uncertainties in LST estimations. A case study over Chandigarh city using Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine, and Random Forest (RF) reveals RF's superior performance in LST estimations during both summer and winter seasons. All the ML models gave an R-square of above 0.8 and RF with slightly higher R-square during both summer (0.93) and winter (0.85). Building on these findings, the study extends its focus to Ranchi, demonstrating RF's robustness with impressive accuracy in capturing LST variations. The research contributes to bridging existing gaps in large-scale LST estimation methodologies, offering valuable insights for its diverse applications in understanding Earth's dynamic systems.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Seasons / Temperature / Environmental Monitoring / Satellite Imagery / Machine Learning Language: En Journal: Environ Monit Assess Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Affiliation country: India Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Seasons / Temperature / Environmental Monitoring / Satellite Imagery / Machine Learning Language: En Journal: Environ Monit Assess Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Affiliation country: India Country of publication: Países Bajos