Your browser doesn't support javascript.
loading
Production, purification, and quality assessment of borrelial proteins CspZ from Borrelia burgdorferi and FhbA from Borrelia hermsii.
Guérin, Mickaël; Vandevenne, Marylène; Brans, Alain; Matagne, André; Marquant, Rodrigue; Prost, Elise; Octave, Stéphane; Avalle, Bérangère; Maffucci, Irene; Padiolleau-Lefèvre, Séverine.
Affiliation
  • Guérin M; Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France.
  • Vandevenne M; Robotein®, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Sart-Tilman, Liège, 4000, Belgium.
  • Brans A; Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Liège, Sart- Tilman), 4000, Belgium.
  • Matagne A; Protein Factory, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Sart-Tilman, Liège, 4000, Belgium.
  • Marquant R; Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Liège, Sart- Tilman), 4000, Belgium.
  • Prost E; Laboratory of Enzymology and Protein Folding, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Sart-Tilman, Liège, 4000, Belgium.
  • Octave S; Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Liège, Sart- Tilman), 4000, Belgium.
  • Avalle B; Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France.
  • Maffucci I; Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France.
  • Padiolleau-Lefèvre S; Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France.
Appl Microbiol Biotechnol ; 108(1): 425, 2024 Jul 23.
Article in En | MEDLINE | ID: mdl-39042328
ABSTRACT
Borrelia, spirochetes transmitted by ticks, are the etiological agents of numerous multisystemic diseases, such as Lyme borreliosis (LB) and tick-borne relapsing fever (TBRF). This study focuses on two surface proteins from two Borrelia subspecies involved in these diseases CspZ, expressed by Borrelia burgdorferi sensu stricto (also named BbCRASP-2 for complement regulator-acquiring surface protein 2), and the factor H binding A (FhbA), expressed by Borrelia hermsii. Numerous subspecies of Borrelia, including these latter, are able to evade the immune defenses of a variety of potential vertebrate hosts in a number of ways. In this context, previous data suggested that both surface proteins play a role in the immune evasion of both Borrelia subspecies by interacting with key regulators of the alternative pathway of the human complement system, factor H (FH) and FH-like protein 1 (FHL-1). The recombinant proteins, CspZ and FhbA, were expressed in Escherichia coli and purified by one-step metal-affinity chromatography, with yields of 15 and 20 mg or pure protein for 1 L of cultured bacteria, respectively. The purity was evaluated by SDS-PAGE and HPLC and is close to about 95%. The mass of CspZ and FhbA was checked by mass spectrometry (MS). Proper folding of CspZ and FhbA was confirmed by circular dichroism (CD), and their biological activity, namely their interaction with purified FH from human serum (recombinant FH15-20 and recombinant FHL-1), was characterized by SPR. Such a study provides the basis for the biochemical characterization of the studied proteins and their biomolecular interactions which is a necessary prerequisite for the development of new approaches to improve the current diagnosis of LB and TBRF. KEY POINTS • DLS, CD, SEC-MALS, NMR, HPLC, and MS are tools for protein quality assessment • Borrelia spp. possesses immune evasion mechanisms, including human host complement • CspZ and FhbA interact with high affinity (pM to nM) to human FH and rFHL-1.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bacterial Proteins / Recombinant Proteins Limits: Humans Language: En Journal: Appl Microbiol Biotechnol Year: 2024 Document type: Article Affiliation country: Francia Country of publication: Alemania

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bacterial Proteins / Recombinant Proteins Limits: Humans Language: En Journal: Appl Microbiol Biotechnol Year: 2024 Document type: Article Affiliation country: Francia Country of publication: Alemania