Your browser doesn't support javascript.
loading
Small-molecule organic electrode materials on carbon-coated aluminum foil for high-performance sodium-ion batteries.
Zou, Jintao; Ji, Lijun; Xu, Ting; Gou, Quan; Fang, Siyu; Xue, Ping; Tang, Mi; Wang, Chengliang; Wang, Zhengbang.
Affiliation
  • Zou J; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engi
  • Ji L; Department of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan 430205, China.
  • Xu T; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engi
  • Gou Q; School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100 China.
  • Fang S; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engi
  • Xue P; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engi
  • Tang M; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engi
  • Wang C; School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China.
  • Wang Z; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engi
J Colloid Interface Sci ; 676: 715-725, 2024 Dec 15.
Article in En | MEDLINE | ID: mdl-39059278
ABSTRACT
Organic molecular electrode materials are promising candidates in batteries. However, direct application of small molecule materials usually suffers from drastic capacity decay and inefficient utilization of active materials because of their high solubility in organic electrolytes and low electrical conductivity. Herein, a simple strategy is found to address the above issues through coating the small-molecule organic materials on a commercialized carbon-coated aluminum foil (CCAF) as the enhanced electrode. Both the experimental and calculation results confirm that the relatively rough carbon coating on the aluminum foil not only exhibits superior adsorption capacity of small-molecule organic electrode materials with a tight contact interface but also provides continuous electronic conduction channels for the facilitated charge transfer and accelerated reaction kinetics. In addition, the carbon coating also inhibits Al corrosion in electrochemical process. As a result, by using the tetrahydroxy quinone-fused aza-phenazine (THQAP) molecule as an example, the THQAP-CCAF electrode exhibits an excellent rate performance with a high capacity of 220 and 180 mAh g-1 at 0.1 and 2 A/g, respectively, and also a remarkable cyclability with a capacity retention of 77.3% even after 1700 cycles in sodium-ion batteries. These performances are much more superior than that of batteries with the THQAP on bare aluminum foil (THQAP-AF). This work provides a substantial step in the practical application of the small-molecule organic electrode materials for future sustainable batteries.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci / J. colloid interface sci / Journal of colloid and interface science Year: 2024 Document type: Article Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci / J. colloid interface sci / Journal of colloid and interface science Year: 2024 Document type: Article Country of publication: Estados Unidos