Your browser doesn't support javascript.
loading
A Gold Nanoparticle-Based Cortisol Aptasensor for Non-Invasive Detection of Fish Stress.
Tanaka, Yuki; Salleh, Nur Asinah Binte Mohamed; Tan, Marie Ruoyun; Vij, Shubha; Wee, Caroline Lei; Sutarlie, Laura; Su, Xiaodi.
Affiliation
  • Tanaka Y; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
  • Salleh NABM; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
  • Tan MR; Republic Polytechnic, School of Applied Science, 9 Woodlands Ave 9, Singapore 738964, Singapore.
  • Vij S; Republic Polytechnic, School of Applied Science, 9 Woodlands Ave 9, Singapore 738964, Singapore.
  • Wee CL; Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore.
  • Sutarlie L; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
  • Su X; Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, Singapore 117543, Singapore.
Biomolecules ; 14(7)2024 Jul 09.
Article in En | MEDLINE | ID: mdl-39062534
ABSTRACT
Cortisol is a key stress biomarker in humans and animals, including fishes. In aquafarming, stress monitoring using cortisol quantification can help to optimize aquaculture practices for welfare and productivity enhancement. However, most current methods for cortisol detection rely on invasive tissue sampling. In this work, we developed a gold nanoparticle (AuNP)-based cortisol sensor to address the demand of detecting picomolar ranges of cortisol from complex fish tank water matrices as a non-invasive alternative for more effective stress monitoring. We first identified a DNA aptamer with effective binding to cortisol and then conjugated the thiol-labelled aptamer to AuNPs together with a blocker molecule (CALNN) to form an Au-Apt-CALNN conjugate that is stable in fish tank water. The cortisol detection principle is based on magnesium chloride (MgCl2)-induced particle aggregation, where the cortisol-bound aptamer on the AuNPs folds into a tertiary structure and provides greater protection for Au-Apt-CALNN against MgCl2-induced aggregation due to steric stabilization. At an optimum MgCl2 concentration, the differential stability of particles with and without cortisol binding offers a limit of detection (LOD) of 100 pM for cortisol within a 35 min reaction. The aptasensor has been validated on recirculating aquaculture system (RAS) fish tank water samples by the HPLC method and was able to detect changes in water cortisol induced by two different stress paradigms. This on-site deployable and non-invasive sensor offers opportunities for more efficient and real-time fish stress monitoring for the optimization of aquaculture practices.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hydrocortisone / Biosensing Techniques / Aptamers, Nucleotide / Metal Nanoparticles / Gold Limits: Animals Language: En Journal: Biomolecules Year: 2024 Document type: Article Affiliation country: Singapur Country of publication: Suiza

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hydrocortisone / Biosensing Techniques / Aptamers, Nucleotide / Metal Nanoparticles / Gold Limits: Animals Language: En Journal: Biomolecules Year: 2024 Document type: Article Affiliation country: Singapur Country of publication: Suiza